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A multi-parametric prognostic model 
based on clinicopathologic features: vessels 
encapsulating tumor clusters and hepatic 
plates predict overall survival in hepatocellular 
carcinoma patients
Si‑Ping Xiong1,2,3†, Chun‑Hua Wang1,2†, Mei‑fang Zhang1,2†, Xia Yang1,2, Jing‑Ping Yun1,2* and Li‑Li Liu1,2*   

Abstract 

Background Vessels encapsulating tumor clusters (VETC) is a newly described vascular pattern that is distinct 
from microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Despite its importance, the current 
pathological diagnosis report does not include information on VETC and hepatic plates (HP). We aimed to evaluate 
the prognostic value of integrating VETC and HP (VETC‑HP model) in the assessment of HCC.

Methods A total of 1255 HCC patients who underwent radical surgery were classified into training (879 patients) 
and validation (376 patients) cohorts. Additionally, 37 patients treated with lenvatinib were studied, included 
31 patients in high‑risk group and 6 patients in low‑risk group. Least absolute shrinkage and selection operator 
(LASSO) regression analysis was used to establish a prognostic model for the training set. Harrell’s concordance 
index (C‑index), time‑dependent receiver operating characteristics curve (tdROC), and decision curve analysis were 
utilized to evaluate our model’s performance by comparing it to traditional tumor node metastasis (TNM) staging 
for individualized prognosis.

Results A prognostic model, VETC‑HP model, based on risk scores for overall survival (OS) was established. The 
VETC‑HP model demonstrated robust performance, with area under the curve (AUC) values of 0.832 and 0.780 
for predicting 3‑ and 5‑year OS in the training cohort, and 0.805 and 0.750 in the validation cohort, respectively. The 
model showed superior prediction accuracy and discrimination power compared to TNM staging, with C‑index values 
of 0.753 and 0.672 for OS and disease‑free survival (DFS) in the training cohort, and 0.728 and 0.615 in the validation 
cohort, respectively, compared to 0.626 and 0.573 for TNM staging in the training cohort, and 0.629 and 0.511 
in the validation cohort. Thus, VETC‑HP model had higher C‑index than TNM stage system(p < 0.01).Furthermore, 
in the high‑risk group, lenvatinib alone appeared to offer less clinical benefit but better disease‑free survival time.
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Introduction
Hepatocellular carcinoma (HCC) ranks third in global 
mortality and sixth in incidence, with China accounting 
for nearly half of all cases and deaths, as reported by 
GLOBOCAN 2022 [1–3]. Early-stage HCC typically 
presents no discernible clinical symptoms, leading to 
diagnoses at advanced stages. However, advancements 
in imaging technology have facilitated early-stage 
HCC detection, allowing more patients to undergo 
curative resection [4]. Additionally, immune-checkpoint 
inhibitors, tyrosine kinase inhibitors, and monoclonal 
antibodies have shown efficacy in treating HCC patients 
[5]. Despite these advancements, long-term outcomes for 
patients remain highly variable, presenting a significant 
clinical management challenge. Current clinical practice 
primarily relies on stratified prognosis prediction 
based on tumor burden and cancer-related symptoms 
[6]. Therefore, the development of a robust prognosis 
prediction model is imperative.

To date, gross description of specimens, 
microscopic description, pathological diagnosis, and 
immunohistochemical examination results are required 
for the pathological diagnosis of HCC [7, 8]. The gross 
description of specimens mainly consists of the features 
of the tumor, distance between the tumor and resection 
margin, and relationship between the tumor and blood 
vessels, bile ducts, and liver envelope. The microscopic 
description comprises the degree and range of tumor 
necrosis, microvascular invasion (MVI), satellite nodules 
(SN), and grading chronic liver diseases using the Batts 
and Ludwig scoring system (G/S stage). Additionally, 
reports should include HCC tissue type (Trabecular, 
Macro Trabecular, Pseudoadenoid and etc.), cell type 
(Hepatic, Clear cell, Chromophobe and etc.), and 
tumor capsule characteristics. Furthermore, molecular 
pathologic findings associated with the clonal origin of 
HCC, biological behavior evaluation, and prognosis/
treatment-related markers should be included in clinical 
reference [7, 8]. In the pathological diagnosis report, 
most immunohistochemistry items were used to classify 
the histopathological type. Occasionally, literature has 
demonstrated that high cell proliferation index KI-67 [9], 
mutation of tumor suppressor gene P53 [10] and other 
factors are correlated with poor prognosis. In addition, 
incomplete tumor capsule [11], MVI [12, 13], envelope 
invasion (EI) [14], vascular invasion (VI) and SN [15, 16] 

often represent poor prognosis. However, the thickness of 
hepatic plates (HP), vessels encapsulating tumor clusters 
(VETC) [17] and some other novel biomarkers, which 
were recently found to correlate with prognosis and/or 
treatment, were seldomly included in the pathological 
diagnosis report.

VETC, distinct from microvascular/vascular invasion, 
is recognized as a predictor of micro metastases 
following HCC surgery [18]. VETC involves the wrapping 
of HCC cell clusters by tumor vascular endothelial 
cells, forming a cobweb-like network as visualized by 
anti-CD34 antibody staining [19]. Previous studies 
suggest that cancer cell clusters enter the circulatory 
system through VETC, travel to target organs via the 
bloodstream, and proliferate to establish new metastatic 
lesions [20]. The presence of VETC correlates with early 
recurrence, shorter overall survival (OS), and worse 
disease-free survival (DFS) [21]. Additionally, Mori et al. 
have proposed VETC as a prognostic biomarker for 
mortality in patients undergoing liver transplantation 
for HCC [22]. Combining MVI with VETC may improve 
the prediction of prognosis in HCC patients [23]. 
Furthermore, clinicopathological parameters such as 
tumor node metastasis (TNM) stage [24], tumor size 
(TS) [25], and VI [26], are known to influence prognosis. 
However, the potential of combining VETC with 
clinicopathological parameters for enhanced prognostic 
prediction remains unclear. Notably, a study by Fang 
et  al. reported that patients with VETC-negative HCC 
treated with sorafenib had a worse prognosis than those 
with VETC-positive HCC [27], highlighting the need for 
further investigate VETC with prognosis and treatment.

In this study, our objective was to develop a prognostic 
model by integrating clinical and pathological 
parameters. We collected more than 1200 samples to 
establish a multi-parametric prognostic model, focusing 
primarily on VETC and HP, termed the VETC-HP model, 
to predict OS in HCC patients. Additionally, we gathered 
data from 37 patients treated with lenvatinib to examine 
the relationship between our VETC-HP model and 
lenvatinib treatment.

Materials and methods
Patient selection and data collection
A total of 1255 patients diagnosed with primary HCC 
from December 2000 to May 2017 and undergoing 

Conclusions The VETC‑HP model enhances DFS and OS prediction in HCC compared to traditional TNM staging 
systems. This model enables personalized temporal survival estimation, potentially improving clinical decision‑making 
in surveillance management and treatment strategies.

Keywords Vessels encapsulating tumor clusters, Hepatocellular carcinoma, LASSO regression, Prognostic model



Page 3 of 14Xiong et al. Journal of Translational Medicine          (2024) 22:472  

liver resection surgery at the Sun Yat-sen University 
Cancer Center (SYSUCC) were included in this study. 
None of these patients had received radiotherapy or 
chemotherapy prior to hepatectomy. Additionally, 
37 patients treated with lenvatinib were included to 
explore the correlation of VETC with lenvatinib. Clinical 
and pathological data were collected (supplementary 
Table  S1). The inclusion criteria were as follows: 1. 
Clinical and Pathological diagnosis of primary HCC; 2. 
Patients who underwent hepatectomy; 3. Absence of 
radiotherapy or chemotherapy prior to hepatectomy; 
4. Absence of other malignancies prior to hepatectomy. 
Patients who did not have all the required parameters 
were excluded.

Tissue microarrays (TMA) were constructed from 
archived paraffin-embedded specimens and anonymized. 
Classic areas for TMA cores were selected by examining 
whole Hematoxylin–Eosin Staining (HE) slides. Six 
different tumoral cores were obtained. The results of 
VETC (evaluated by CD34 staining) on TMA were 
compared with whole slides for most patients. This study 
was approved by the Institute of Research Medical Ethics 
Committee of SYSUCC.

At the time of diagnosis before any treatment, clinical 
and serological data were collected, including age, 
sex, HBV DNA copy number, serum AFP, tumor size 
(TS), tumor multiplicity, tumor differentiation, liver 
cirrhosis, vascular invasion (VI), microvascular invasion 
(MVI), HCC tissue type, HCC cell type, tumor capsule, 
lymph node metastasis (LNM), VETC (evaluated by 
CD34 staining), Hepatic plate (HP), tumor infiltrating 
lymphocytes (TILs), G/S stage (according to the Batts and 
Ludwig score system) [28], and TNM stage, which are 
related to prognosis and treatment and are recommended 
in different guidelines for the diagnosis and treatment 
of HCC [7, 8, 29–31]. These clinical parameters were 
collected through the electronic Information System 
of SYSUCC. Some of these pathological parameters 
were also obtained from pathological diagnostic 
reports in the electronic Information System, while 
the other pathological parameters (mainly including 
HP and VETC) were achieved via re-evaluating slides 
and TMA with two independent pathologists. Patients 
treated with lenvatinib + surgery were designated as 

the lenvatinib alone group, and those treated with 
Lenvatinib + transcatheter arterial chemoembolization 
(TACE)/ transcatheter arterial infusion (TAI) + surgery 
were designated as the lenvatinib combined group.

Hematoxylin and eosin (HE) and immunohistochemistry 
(IHC) staining
A 4-mm slice of the TMA block was placed on a 
glass slide, which was dewaxed and treated with 3% 
hydrogen peroxide in methanol. IHC staining were 
performed after blocking with a biotin-blocking kit 
(DAKO, Hamburg, Germany). The expression pattern 
of CD34 (Catalog number MAB-1076, Fuzhou Maixin 
Biotechnology Development Company, China) in HCC 
was evaluated by two independent pathologists (Mei-
Fang Zhang and Chun-Hua Wang). CD34-labeled vessels 
that encapsulated tumor clusters were identified by the 
presence of cobweb-like networks with unequivocal 
immunoreactivity of a continuous lining [17, 32]. Staining 
of CD34 spanning > 50% of the tumor surface was defined 
as VETC-positive (Fig. 1A), while staining covering ≤ 50% 
was deemed VETC-negative (Fig.  1B). Hepatic plates/
cords < 6 cells in thickness were classified as thin plates 
(Fig.  1C), whereas those ≥ 6 cells in thickness were 
considered thick plates (Fig.  1D), and the specific cell 
thickness was recorded.

Patient follow up
Follow-up data on patients were collected through 
medical record searches, emails, and direct telephone 
communication. Patients were followed up until January 
2020 unless they had died. The follow-up period was 
defined as the time interval between the surgery and 
the last follow-up. OS was recorded as the time between 
surgery and cancer-related death or the date of the last 
follow-up, while DFS was defined as the time between 
surgery and recurrence or metastasis or the date of the 
last follow-up.

Statistical analyses
Statistical analyses were conducted using IBM SPSS 
software (version 19.0; Chicago, IL, USA) and R version 
3.6.0 (http:// www.R- proje ct.org). Categorical variables 
were classified directly based on clinical findings, while 

(See figure on next page.)
Fig. 1 Selection of potential predictive factors using LASSO regression analysis. Representative images of A VETC positive, stained with CD34, 
B VETC negative, stained with CD34, C HP thickness < 6 layers, and D HP thickness ≥ 6 layers; E Penalty parameter in LASSO regression analysis. 
Tenfold cross validation and 1 standard error were used to tune the penalty parameter; F Changing trajectories of each predictive factor. The x‑axis 
represents the log value of each predictive factor λ and the y‑axis represents the coefficient of the independent predictive factor; G Histogram 
shows the role of each predictive factor that contributes to the constructed prognostic model. The x‑axis represents the predictive factors 
and the y‑axis represents the coefficients in the LASSO regression analysis of each predictive factor

http://www.R-proje
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Fig. 1 (See legend on previous page.)
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continuous variables were transformed into categorical 
variables using the R packages "survival" [33] and 
"survminer" [34]. The distribution between patients 
in the training and validation sets. Was analyzed 
using the chi-square test. The most useful prognostic 
variables in the training cohort were selected via Least 
absolute shrinkage and selection operator (LASSO) 
regression analysis using the R package "glmnet" [35, 
36]. Prognostic models were evaluated using Harrell’s 
concordance index (C-index), time-dependent receiver 
operating characteristics curve (tdROC), and decision 
curve analysis [37], as described in previous reports. 
The "survivalROC" package [38] and the "survcomp" 
package [39] were used to calculate the area under the 
curve (AUC) and the C-index, respectively. TNM staging 
and the prognostic model risk score and were used to 
establish a nomogram via the “rms” package [40]. For 
OS and DFS survival analyses, a Kaplan–Meier survival 
analysis and a log-rank test were performed. Pearson’s 
correlation coefficient [41] was employed to evaluate the 
association between the prognostic model, TNM staging, 
and lenvatinib treatment.

Results
Patient characteristics
A total of 1255 eligible patients were divided into a 
training cohort (879 cases) and a validation cohort (376 
cases). The median follow-up times for OS in the training 
and validation cohorts were 31.7  months (interquartile 
range (IQR):13.0–43.1) and 32.3  months (IQR: 12.8–
46.2), respectively. For DFS, the median follow-up times 
were 20.4  months (IQR: 6.2–38.8) and 25.5  months 
(IQR: 7.2–42.9) in the training and validation cohorts, 
respectively. In the training cohort, the OS rates were 
78.5% at 1  year, 55.2% at 3  years, and 48.2% at 5  years. 
In the validation cohort, the corresponding rates were 
77.4%, 54.3%, and 45.7%, respectively. The DFS rates at 
1, 3, and 5  years in the training set were 73.4%, 62.1%, 
and 58.7%, respectively, and in the validation set, they 
were 77.4%, 68.1%, and 64.4%, respectively. Detailed 
clinicopathological characteristics of HCC patients 
and the optimal cut-off values for each continuous 
variable are presented in Table  1, while representative 
images of VETC and HP are displayed in Fig. 1A–D. The 
distribution of clinicopathological characteristics was 
similar between the training and validation cohorts.

Construction of the multi‑parametric prognostic model 
based on clinical and pathologic parameters
LASSO regression analysis was performed on the training 
cohort to screen for prognostic clinicopathological 
characteristics. The model was established using tenfold 
cross-validation, with an optimal λ value of 0.055. The 

Table 1 Clinicopathological characteristics of patients in the 
training and validation cohort

Characteristic Training 
cohort 
(n = 879)

Validation 
cohort (n = 376)

P value

Gender 0.635

 Male 758 (86.2%) 328 (87.2%)

 Female 121 (13.8%) 48 (12.8%)

Age (years) 0.546

  < 49 402 (45.7%) 165 (43.9%)

  ≥ 49 477 (54.3%) 211(56.1%)

Tumor multiplicity 0.998

 Single 491 (55.9%) 210 (55.9%)

 Multiple 388 (44.1%) 166 (44.1%)

Tumor size (cm) 0.082

  < 5 319 (36.3%) 156 (41.5%)

  ≥ 5 560 (63.7%) 220 (58.5%)

HBV 0.932

 Negative 149 (17.0%) 63 (16.8%)

 Positive 730 (83.0%) 313 (83.2%)

AFP (ng/ml) 0.932

  < 20 250 (28.4%) 109 (29.0%)

  ≥ 20 629 (71.6%) 267 (71.0%)

Tumor Differentiation 0.609

 Well‑Moderate 510 (58.0%) 224 (59.6%)

 Poor 369 (42.0%) 152 (40.4%)

Cirrhosis 0.985

 No 231 (26.3%) 99 (26.3%)

 Yes 648 (73.7%) 277 (73.7%)

VI 0.664

 No 766 (87.1%) 331 (88.0%)

 Yes 113 (12.9%) 45 (12.0%)

MVI 0.164

 No 635(72.2%) 257(68.4%)

 Yes 244(27.8%) 119(31.6%)

Tissue type 0.955

 Micro 234 (26.6%) 97 (25.8%)

 Macro 416 (47.3%) 180 (47.9%)

 Others 229 (26.1%) 99 (26.3%)

Cell type 0.544

 Hepatic 746 (84.9%) 328 (87.2%)

 Clear cell 73 (8.3%) 27 (7.2%)

 Others 60 (6.8%) 21 (5.6%)

LNM 0.191

 No 848 (96.5%) 368 (97.9%)

 Yes 31 (3.5%) 8 (2.1%)

VETC 0.304

 Negative 482 (54.8%) 218 (58.0%)

 Positive 397 (45.2%) 158 (42.0%)

Hepatic plate 0.725

  < 6 353 (40.2%) 155 (41.2%)

  ≥ 6 526 (59.8%) 221 (58.8%)
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confidence interval for each λ is depicted in Fig.  1E, 
while Fig.  1F illustrates the trajectory changes for each 
analyzed indicator. Among the 18 markers, six indicators 
were selected: MVI, HP, TS, VETC, S stage, and VI, as 
shown in Fig.  1G. Based on these clinicopathological 
characteristics, a multi-parametric prognostic model 
(VETC-HP model) was established using LASSO 
regression analysis. The VETC-HP model risk score was 
calculated using the formula: Prognostic model risk sco
re = −  2.512 − (0.178 × MVI) + (0.046 × HP) + (0.149 × TS) 
+ (0.252 × VETC) + (0.446 × S stage) + (0.671 × VI). In this 
formula, each qualitative variable is assigned a value of 
0 or 1. Parameters are assigned a value of 1 for patients 
with positive MVI, VI, or VETC, and 0 otherwise.

Evaluation and validation of the predictive performance 
of the VETC‑HP model
The discriminatory performance of the VETC-HP 
model and TNM staging was evaluated using the 
C-index (Table 2 and Figure S1). In the training cohort, 
the C-index for OS was significantly higher for the 

VETC-HP model (0.753, 95% CI 0.732–0.775) compared 
to the TNM staging system (0.626, 95% CI 0.600–0.651, 
p < 0.001). Similarly, in the validation cohort, the C-index 
for OS was higher for the VETC-HP model (0.728, 95% 
CI 0.693–0.763) compared to the TNM staging system 
(0.629, 95% CI 0.592–0.666, p < 0.001). For DFS, the 
VETC-HP model also outperformed the TNM staging 
system in both cohorts: 0.672 (95% CI 0.646–0.698) vs. 
0.573 (95% CI 0.544–0.603, p < 0.001) in the training 
cohort, and 0.615 (95% CI 0.564–0.666) vs. 0.511 (95% 
CI 0.462–0.560, p < 0.001) in the validation cohort. These 
results indicate that the VETC-HP model demonstrates 
superior discriminatory ability compared to the TNM 
staging system.

The tdROC analysis further supported the superior 
prognostic accuracy of the VETC-HP model over 
TNM staging. The AUCs for 1-year, 3-year, and 5-year 
overall survival in the training set were 0.782, 0.832, and 
0.805, respectively, for the VETC-HP model, compared 
to lower AUCs for TNM staging (0.678, 0.666, and 0.623, 
respectively). Similarly, in the validation cohort, the 
VETC-HP model exhibited higher AUCs for both OS 
and DFS compared to the TNM staging system (Fig. 2). 
These results consistently indicate that the VETC-HP 
model provides better predictions of survival time than 
the TNM staging system.

Table 1 (continued)

Characteristic Training 
cohort 
(n = 879)

Validation 
cohort (n = 376)

P value

Tumor Capsule 0.869

 Incomplete 414 (47.1%) 179 (47.6%)

 Complete 465 (52.9%) 197 (52.4%)

G stage 0.934

 1 17 (1.9%) 8 (2.1%)

 2 407 (46.3%) 168 (44.7%)

 3 146 (16.6%) 67 (17.8%)

 4 309 (35.2%) 133 (35.4%)

S stage 0.727

 1 17 (1.9%) 8 (2.1%)

 2 476 (54.1%) 195 (51.9%)

 3 77 (8.8%) 40 (10.6%)

 4 309 (35.2%) 133 (35.4%)

Tils (%) 0.903

  < 10 697 (79.3%) 297 (79.0%)

  ≥ 10 182 (20.7%) 79 (21.0%)

TNMa 0.483

 I 275 (31.3%) 120 (32.2%)

 II 265 (30.1%) 126 (33.5%)

 III 279 (31.7%) 104 (27.7%)

 IV 60 (6.8%) 26 (6.9%)

TNM tumor node metastasis stage, VI vascular invasion, MVI microvascular 
invasion

LNM lymph node metastasis, VETC vessels encapsulating tumor clusters, Tils 
tumor infiltrating lymphocytes, G stage grade of inflammation, S stage stage of 
fibrosis

a TNM stage was classified according to the AJCC 7th TNM staging system

Table 2 The C‑index of our model, TNM stage for prediction of 
OS and DFS in HCC in the training cohort and validation cohort

Our model: Tumor size + Vascular Invasion + microVascular Invasion + VETC 
(evaluated by CD34) + Hepatic plate + S stage

C-index = concordance index; P values are calculated based on normal 
approximation using function rcorrp.cens in Hmisc package

C‑index 95 CI% P

Training cohort

For OS

 Our model 0.753 0.732–0.775

 TNM stage 0.626 0.600–0.651

 Our model vs TNM stage  < 0.001

For DFS

 Our model 0.672 0.646–0.698

 TNM stage 0.573 0.544–0.603

 Our model vs TNM stage  < 0.001

Validation cohort

 For OS

 Our model 0.728 0.693–0.763

 TNM stage 0.629 0.592–0.666

 Our model vs TNM stage  < 0.001

For DFS

 Our model 0.615 0.564–0.666

 TNM stage 0.511 0.462–0.560

 Our model vs TNM stage  < 0.001
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Decision curve analysis demonstrated that the 
VETC-HP model for OS and DFS had a superior overall 
net benefit compared to the TNM staging system across a 
wide range of threshold probabilities in both the training 
and validation sets (Fig. 3).

Establishment of a nomogram based on prognostic model 
risk score
Based on the prognostic model risk score and TNM 
staging, we established a nomogram to predict OS and 
DFS at 1, 3, and 5 years (Fig. 4A and E). Each subtype was 
assigned a point based on its variable, and the nomogram 
was used to determine the probability of OS and DFS 
at specified time points. To utilize the nomogram for 
individual patients, their information for the risk score 
and TNM stage (represented on axes 2 and 3) should 
be plotted as a point on the first axis. The sum of these 
two points, relative to the total number of points, is 
then marked on axis 4. A line is then drawn downward 
to the risk axis (axes 5–7) to ascertain the likelihood of 
recurrence for that patient at 1, 3, and 5 years.

Calibration plots were used to assess the consistency 
between the predictions made by the nomogram and 
actual observations (Fig.  4B–D and F–H). These plots 
demonstrated good agreement between the nomogram 
predictions and observed probabilities of OS and DFS at 
1, 3, and 5 years.

Performance of VETC‑HP model risk score in risk 
stratification
The distribution of risk scores and the optimal cutoff 
value (0.05) for the VETC-HP model are illustrated in 
Figure S2. Patients with a risk score ≤ 0.05 were classified 
as low-risk, while those with a score > 0.05 were classified 
as high-risk. Table  3 presents the OS and DFS rates for 
the high- and low-risk groups in both the training and 
validation cohorts.

In the training cohort, the high-risk group had a 
median OS of 18.5  months (IQR: 8.0–36.8  months), 
compared to 38.4  months (IQR: 30.6–45.4  months) for 
the low-risk group. The survival probabilities at 1, 3, and 
5  years for the high-risk group were 65.4%, 32.5%, and 
22.9%, respectively. In contrast, the low-risk group had 

Fig. 2 Predictive accuracy comparison between the prognostic model and TNM staging. Time dependent ROC curves at 1, 3, and 5 years A–C 
for OS, D–F for DFS in the training set (left) and the validation set (right)
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higher survival probabilities at 1, 3, and 5  years, with 
rates of 93.6%, 81.4%, and 77.5%, respectively (Table  3). 
Kaplan–Meier analysis of OS revealed significantly worse 
outcomes for patients in the high-risk group in both the 
training and validation cohorts (Fig. 5A). This trend was 
consistent across stage I/II and III/IV subgroups (Fig. 5B, 
C).

For DFS, the high-risk group in the training 
cohort had a median DFS of 8.4  months (IQR: 3.2–
24.6  months), while the low-risk group had a median 
DFS of 35.75 months (IQR: 19.6–43.2 months). The DFS 
probabilities at 1, 3, and 5 years for the high-risk group 
were 61.4%, 51.8%, and 49.5%, respectively, compared to 
87.3%, 74.0%, and 69.4%, respectively, for the low-risk 

group (Table 3). Kaplan–Meier analysis of DFS indicated 
worse prognoses for the high-risk group in the training 
cohort, although no significant difference was observed 
in the validation cohort (Fig.  5D). Stratified analysis by 
stage status showed consistent results, with the low-risk 
group demonstrating better DFS prognoses in both stage 
I/II and stage III/IV in the training cohort, whereas the 
validation cohort did not show a significant difference in 
DFS between the two groups (Fig. 5E, F).

Correlation of VETC‑HP prognostic model with six factors 
and Lenvatinib treatment
The distributions of the six predictors contributing to 
our prognostic model are depicted for the training and 

Fig. 3 Decision curve analysis for each model. OS (A) and DFS (B) in the training set (left) and the validation set (right). The black line represents 
the net benefit for our prognostic model, and the red line represents the net benefit of TNM stage. The y‑axis represents the net benefit 
and the x‑axis represents the threshold probabilities
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validation cohorts in Figure S3. Factors such as MVI 
(Figure S3A), S stage (Figure S3E), and VI (Figure S3F) 
did not significantly differ between the high-risk and low-
risk groups. However, VETC (Figure S3D), HP (Figure 
S3B), and TS (Figure S3C) showed marked differences. 
The high-risk group exhibited a higher prevalence of 
VETC-positive patients (Figure S3D), thicker HP (Figure 
S3B), and larger tumor sizes (Figure S3C) compared to 
the low-risk group.

Previously, a study indicated a correlation between the 
VETC pattern and the efficacy of sorafenib treatment in 
HCC patients [27]. And our results showed that VETC 
positive patients were more in high-risk group than in 
low-risk group. Thus, we included another 37 patients 

treated with lenvatinib. There were no significant 
differences between the high- and low-risk groups in 
terms of clinical benefit (Fig.  6A) or DFS prognosis 
(Fig.  6B). However, in the Lenvatinib + surgery group 
(lenvatinib alone), the high-risk group showed a trend 
towards better DFS prognosis (log-rank p = 0.058, 
Fig.  6C), while no difference was observed in the 
lenvatinib + TACE/TAI + surgery group (lenvatinib 
combined) (Fig. 6F). Furthermore, in the high-risk group, 
the lenvatinib combined group exhibited a slightly, 
but not significantly, higher clinical benefit than the 
lenvatinib alone group (p = 0.056, Fig.  6D), while the 
lenvatinib alone group had a better DFS prognosis (log-
rank p = 0.059, Fig. 6E).

Fig. 4 Nomograms to predict OS (A) and DFS (E) for HCC patients. Calibration plots (B–D for OS, F–H for DFS) for the nomograms at 1, 3, 
and 5 years in the training set (left) and the validation set (right). The gray line indicates the ideal reference line where predicted probabilities would 
match the observed survival rates. The red dots are calculated by bootstrapping and represent the performance of the nomogram
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Table 3 OS and DFS rate in high‑risk and low‑risk groups according to our model risk score in the training and validation cohort

OS overall survival, DFS disease free survival, IQR interquartile range

Parameter training cohort Validation cohort

High‑risk group Low‑risk group Total High‑risk group Low‑risk group Total

No. of patients 471 408 879 195 181 376

OS

 Median 18.5 38.4 20.4 38.2

 IQR 8.0–36.8 30.6–45.4 7.8–42.4 29.7–46.8

No. of OS

 At 1 year 308 (65.4%) 382 (93.6%) 690 (78.5%) 128 (65.6%) 163 (90.1%) 291 (77.4%)

 At 3 year 153 (32.5%) 332 (81.4%) 485 (55.2%) 66 (33.8%) 138 (76.2%) 204 (54.3%)

 At 5 year 108 (22.9%) 316 (77.5%) 424 (48.2%) 48 (24.6%) 124 (68.5%) 172 (45.7%)

DFS

 Median 8.4 35.75 11.9 34.3

 IQR 3.6–24.6 19.6–43.2 45–36.2 14.9–44.0

No. of DFS

 At 1 year 289 (61.4%) 356 (87.3%) 645 (73.4%) 138 (70.8%) 153 (84.5%) 291 (77.4%)

 At 3 year 244 (51.8%) 302 (74.0%) 546 (62.1%) 130 (66.7%) 126 (69.6%) 256 (68.1%)

 At 5 year 233 (49.5%) 283 (69.4%) 516 (58.7%) 124 (63.6%) 118 (65.2%) 242 (64.4%)

Fig. 5 Kaplan–Meier analyses of OS and DFS according to the prognostic model risk score classifier in subgroups of HCC patients in the training set 
(left) and the validation set (right): total patients (A for OS, D for DFS); stage I/II (B for OS, E for DFS); stage III/IV (C for OS, F for DFS)
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Discussion
In this study, we used VETC combined with other 
clinical pathological parameters to establish a multi-
parametric prognostic model for HCC prognosis 
prediction. Initially, the VETC-HP model, capable 
of predicting survival rates with high accuracy, 
was established using the LASSO regression assay, 
a method employed in previous studies [36]. This 
model represents an innovative prognostic tool that 
outperforms the TNM staging system in predicting 
survival outcomes for HCC patients, providing valuable 
clinical research insights into incorporating VETC and 
HP characteristics into pathology reports.

In the present guidelines for the pathological 
diagnosis of HCC, gross description of specimens, 
microscopic description, pathological diagnosis, and 
immunohistochemical examination results are required. 
Additionally, molecular pathologic findings, biological 
behavior evaluations, and prognosis/treatment-related 
markers should be included in clinical reference [7, 
8]. However, most pathological reports do not include 
the prognostically significant VETC and hepatic plate 
thickness. Our study underscores the importance of 
including these parameters in HCC pathology reports 
based on the findings of our novel VETC-HP model, 

which demonstrates their significance in prognosis and 
treatment planning.

While prior studies have indicated a correlation 
between VETC and the prognosis of HCC patients [23, 
42, 43], our study did not find VETC to be an independent 
prognostic indicator in a cohort of 1255 patients. 
Nonetheless, recognizing the potential prognostic 
value of VETC, we sought to develop a highly efficient 
prognostic model centered on VETC. Consequently, 
we constructed the VETC-HP model, which combines 
VETC with other clinicopathological parameters. 
The prognostic performance of the VETC-HP model 
surpassed that of the conventional TNM staging 
system. This study, one of the largest retrospective 
research endeavors, has led to the development of an 
effective prognostic model for HCC patients. Notably, 
the VETC-HP model includes only six easily evaluated 
pathological characteristics, making it a simple and 
convenient tool for predicting HCC prognosis.

Our VETC-HP, based on 18 parameters, identified 6 
significant hazard ratios. This model was developed using 
a training cohort and validated with a separate cohort. 
Our results demonstrated a clear distinction in OS curves 
between patients with high and low scores. Notably, 
the VETC-HP model outperformed the current TNM 

Fig. 6 Clinical benefit ratio between the high‑risk group and the low‑risk group in Lenvatinib treated patients (A), and between the Lenvatinib 
alone group and the Lenvatinib combined group in the high‑risk group (D). Kaplan–Meier analyses of DFS between the high‑risk group 
and the low‑risk group in all Lenvatinib‑treated patients (B), Lenvatinib alone patients, Lenvatinib + surgery group (C), and Lenvatinib combined 
patients, Lenvatinib + TACE/TAI + surgery group (F). Kaplan–Meier analyses of DFS between the Lenvatinib alone group and the Lenvatinib 
combined group in the high‑risk group (E)
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staging system in predicting OS. These results suggest 
that the VETC-HP model could serve as a valuable tool 
for prognosis prediction, complementing the existing 
TNM staging system. Additionally, the nomogram, 
incorporating the VETC-HP model and TNM stage, 
exhibited superior prognostic value compared to TNM 
staging alone, enhancing the predictive strength of the 
traditional TNM method. These results were consistent 
in the validation cohort, confirming the utility of the 
VETC-HP model in HCC and potentially advancing.

To date, only one study has investigated the relationship 
between VETC and sorafenib treatment [27]. Given 
that lenvatinib shares a similar mechanism of action 
with sorafenib, we explored the association between the 
VETC-HP model and lenvatinib treatment. Although 
no significant differences were observed in clinical 
benefit, DFS, and other parameters, likely due to the 
small sample size, some trends were noted. Specifically, 
in the high-risk group, the lenvatinib combined group 
showed a slightly higher clinical benefit compared to the 
lenvatinib alone group (p = 0.056), while the lenvatinib 
combined group may have had a poorer DFS prognosis 
than the lenvatinib alone group (log-rank p = 0.059). 
Moreover, in the lenvatinib alone group, the high-risk 
group might have exhibited a better DFS prognosis than 
the low-risk group. And in our study, the high-risk group 
had more VETC-positive patients than VETC-negative 
patients. The trends of our results were similar to Fang 
and his colleagues’ study, which was found that patients 
with VETC-negative HCC treated with sorafenib had a 
worse prognosis than those with VETC-positive HCC 
[27]. Further, Zhang and his colleagues found that gene 
expression levels of fibroblast growth factor receptors 
were upregulated in VETC-positive HCC, which 
suggested that VETC-positive HCC might benefit from 
Lenvatinib treatment [32]. Therefore, previous report and 
our study imply that high-risk VETC-HP patients may be 
more suitable for treatment with lenvatinib alone, thus 
providing clinical evidence for the use of lenvatinib in 
personalized clinical treatment.

Given the retrospective nature of this study, the 
limitations in reliability on data collection and selection 
bias should be noted. Specifically, we were unable to 
retrospectively collect data on the protein level induced 
by vitamin K absence or antagonist-II (PIVIKA II), a 
newly discovered serological marker of HCC, for all 
patients; therefore, this parameter was excluded from 
our analysis. Additionally, some patients transferred to 
other hospitals post-surgery, making it difficult to track 
the trajectory of adjunct therapy following surgery. 
Moreover, due to our sample size, further research 
is needed to fully elucidate the relationship between 
lenvatinib treatment and our model.
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