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Choline metabolism reprogramming 
mediates an immunosuppressive 
microenvironment in non‑small cell lung 
cancer (NSCLC) by promoting tumor‑associated 
macrophage functional polarization 
and endothelial cell proliferation
Bijing Xiao1†, Guanjun Li2†, Haimiti Gulizeba1†, Hong Liu1, Xiaoxian Sima1, Ting Zhou1* and Yan Huang1*    

Abstract 

Introduction  Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. 
However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline 
metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the pre-
cise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenviron-
ment in lung cancer, and the response and resistance of immunotherapy still unclear.

Methods  Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy 
in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 
courses of immunotherapy and survival outcomes were collected. Kaplan–Meier survival and cox regression analysis 
were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline 
metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional 
enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights 
into potential mechanisms, single-cell analysis was performed.

Results  Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associ-
ated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables 
from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabo-
lism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found 
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Introduction
Lung cancer is one of the most prevalent malignancies 
worldwide and still has the highest rate of cancer-related 
mortality, with non-small cell lung cancer (NSCLC) 
being the most common type in which lung adenocarci-
noma (LUAD) is the most common histologic type [1]. 
Over the past decades, immunotherapy has revolution-
ized the treatment landscape of NSCLC and has emerged 
as a standard first-line therapy for advanced or metastatic 
NSCLC patients with negative driver-gene mutation [2, 
3]. However, there remains a substantial proportion of 
patients did not benefit from immunotherapy and some 
patients present primary or secondary resistance, con-
tributing to poor therapeutic effect and dismal prognosis. 
Therefore, there is a pressing need to identify accurate 
and efficient biomarkers and to explore the mechanisms 
of resistance to immunotherapy.

Cholinesterase (ChE) is a glycoprotein synthesized by 
the liver and secreted into the blood, which are involved 
in a diverse range of physiological and pathological pro-
cesses, including cellular growth, differentiation, apopto-
sis, inflammation and cell metabolism [4, 5]. Moreover, 
accumulating evidence showed that the decreased level 
or activity of ChE may play an important role in the 
development and progression of tumors and may be 
associated with the poor prognosis of multiple cancers, 
including lung cancer [6], gastric cancer [7], prostate 
cancer [8] and cervical cancer [9]. However, to our best 
known, no studies have yet reported the protective role 
of ChE in tumor immunity.

Moreover, ChE is intimately tied to choline metabo-
lism. ChE is a key enzyme responsible for catalyzing the 
hydrolysis of acetylcholine (ACh) into choline and ace-
tic acid [10], playing a crucial role in maintaining a bal-
anced choline metabolism. Choline metabolism closely 
involves in protecting the integrity of cell membrane, 
coordinating the methylation and synthesizing important 
neurotransmitters [11]. In cancer, the rapid proliferation 

of malignant tumor cells promotes a large amount of 
choline uptake through the overexpression of enzymes, 
variations in choline transporters and changes in signal-
ing pathways, which result in the dysregulation of cho-
line metabolism [12]. Abnormal choline metabolism has 
emerged as a metabolic hallmark of tumor oncogenesis 
and progression [13]. Recent research has indicated that 
choline metabolism-related signature is associated with 
the immune microenvironment of colon adenocarcinoma 
patients and has potential application value in predicting 
the prognosis and chemotherapy response [14]. Specifi-
cally, they found that patients in the high-risk group of 
choline metabolism had an elevated levels of CD8 + T 
cells and Treg cells. The presence of immunosuppressive 
factors in the tumor microenvironment likely hinders the 
antitumor function of CD8 + T cells, contributing to the 
poorer prognosis observed in the high-risk group of cho-
line metabolism and potentially leading to worse efficacy 
of immunotherapy. Nevertheless, the precise mechanism 
of the relationship between choline metabolism and 
tumor immune microenvironment in NSCLC, and the 
response and resistance of immunotherapy still need to 
be elucidated.

In this study, we assess the effect and potential pre-
dictive and prognostic value of ChE NSCLC patients 
undergoing immunotherapy. Meanwhile, a risk model 
based on choline metabolism-related genes was devel-
oped, and single-cell analysis was used to explore the 
interconnection between choline metabolism and tumor 
microenvironment. Our findings suggest that ChE may 
be effective to predict prognosis and immunotherapy 
efficacy of NSCLC and provide an important refer-
ence value for treatment. Furthermore, our study indi-
cates that methylenetetrahydrofolate dehydrogenase 1 
(MTHFD1), a key suppressor gene in choline metabo-
lism, is correlated with an immunosuppressive microen-
vironment and involved in macrophage differentiation 
as well as endothelial cell proliferation, thus contributing 

to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature 
was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. 
scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating 
the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell 
proliferation and tumor angiogenesis.

Conclusion  Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its 
potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic 
signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive micro-
environment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, 
providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.

Keywords  Non-small cell lung cancer, Cholinesterase, Choline metabolism, Immunotherapy response, Metabolic 
reprogramming, Immune microenvironment, Macrophage, Endothelial cell proliferation
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to a deeper understanding of the intricate mechanisms 
underlying choline metabolism in the development of 
NSCLC.

Materials and methods
Patient selection
298 advanced and treatment-naïve NSCLC patients 
treated with immunotherapy at Sun Yat-sen University 
Cancer Center between August 2018 and April 2023 
were screened in this retrospective, observational study. 
Exclusion criteria included: receiving prior anticancer 
therapy; lacking baseline or the alteration level of ChE 
after 2 cycles of immunotherapy; lacking efficacy and 
survival data; loss to follow-up. 21 patients who met the 
exclusion criteria were excluded and finally 277 eligible 
patients were enrolled in our study. The flow chart of 
patients screening was summarized in Additional file  1: 
Figure S1. Ethics approval for this study, including a 
waiver of informed consent, was achieved from Sun Yat-
sen University Cancer Center Institutional Review Board 
(SL-B2022-680-02).

Clinical data collection and outcomes
Patients baseline characteristics including age, gender, 
Eastern Cooperative Oncology Group performance sta-
tus (ECOG-PS), smoking status, distant metastasis and 
treatment regimens were documented. In addition, base-
line laboratory parameters (within 7  days prior to the 
treatment initiation) including cholinesterase, lactate 
dehydrogenase (LDH), serum albumin (ALB), C-reactive 
protein (CRP), serum amyloid A (SAA) and neutrophil–
lymphocyte ratio (NLR = absolute neutrophil count/
absolute lymphocyte count) were collected and analyzed. 
Meanwhile, ChE level after 8 [± 2] weeks after the ini-
tiation of immunotherapy was also collected and all the 
patients were then categorized into ChE-increased group 
and ChE-decreased group based on the alteration level of 
ChE.

Tumor response and progression were regularly per-
formed according to Response Evaluation Criteria in 
Solid Tumors version 1.1 (RECIST 1.1) per Response 
Evaluation Criteria. The primary endpoint was over-
all survival (OS) defined as the time from initiation of 
immunotherapy to death from any causes. The secondary 
endpoint was progression-free survival (PFS) calculated 
from initiation of immunotherapy to tumor-progression 
or death from any causes. Patients who had not pro-
gressed or are not deceased were censored at the time of 
the last follow up.

Establishment of a prognostic nomogram
Those significant clinical predictors observed in multi-
variate Cox model (p < 0.05) were then used to construct 

a nomogram. Then, we calculated the sum points of 
each patient based on the constructed nomogram and 
the median level of total points were used to stratified 
patients into high/low-point groups. Time-dependent 
receiver operating characteristic (ROC) curves at 1-, 2-, 
3-year OS were plotted, and the area under the curve 
(AUC) was calculated to evaluate the predictive value 
of the nomogram. The prediction probability and the 
observed result frequency were compared through the 
calibration curve.

Genomic data collection
RNA sequencing (RNA-seq) data of 600 LUAD samples, 
including 513 cancer samples and 87 adjacent normal 
samples were downloaded from The Cancer Genome 
Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/​
proje​cts/​TCGA-​LUAD). The clinical information includ-
ing age, gender, TNM stage, survival time and survival 
status were also obtained.

In addition, the ORIENT-11 study, served as a valida-
tion dataset, is a multi-center, randomized, double-blind, 
phase 3 study which enrolled 398 advanced or meta-
static NSCLC patients in China [15], receiving sintilimab 
(anti-PD1) plus pemetrexed and platinum (experiment 
group) or placebo plus pemetrexed and platinum (con-
trol group). 227 patients lacking RNA-seq data and 
58 patients in control group (did not receive anti-PD1 
therapy) were excluded in our study. Finally, the RNA-
seq data as well as the clinical information of the 113 
patients from ORIENT-11 study was collected for further 
analysis.

Construction and validation of a choline metabolism risk 
model
Choline metabolism-related genes were obtained from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database, AmiGO2 website and Reactome Pathway 
Databases (Additional file  2: Table  S1). Univariate and 
multivariate Cox analysis were performed to identify sig-
nificant and independent OS-associated choline metab-
olism-related genes in TCGA-LUAD database. The risk 
scores of each patient both in TCGA database and the 
orient-11 study (the validation cohort) calculated using 
the following formula.

Patients were then classified into high-risk and low-risk 
group based on the median level of risk score. R package 
of “survminer” were used to plot the risk curves and sur-
vival curves of two risk groups and “survivalROC” pack-
age were conducted to draw the ROC curves.

Risk score =

n∑

n=1

(coefi × xi)

https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
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Functional enrichment and immune microenvironment 
analysis
The "limma" R package was utilized to identify differen-
tially expressed genes (DEGs) between the high-risk and 
low-risk groups in TCGA-LUAD. Using the R package 
“clusterProfiler” [16], GO function enrichment analysis 
and KEGG pathway enrichment analysis of the DEGs 
were performed. Additionally, the "msigdbr" R pack-
age was used to perform Gene Set Enrichment Analysis 
(GSEA) on the DEGs to analyze the signaling pathways 
enrichment in different risk-groups. "IOBR" R pack-
age [17] was used to calculate the immune infiltration 
score and metabolism score for high-risk and low-risk 
patients. The Tumor Immune Dysfunction and Exclu-
sion (TIDE) score [18], a computational method to 
model two primary mechanisms of tumor immune eva-
sion, were downloaded from the TIDE database (http://​
tide.​dfci.​harva​rd.​edu/) after following the instructions on 
the website to uploaded input data, and the TIDE scores 
in two risk groups were analyzed. Besides, the scoring 
data of immune checkpoint inhibitors (ICIs) treatment 
were downloaded from the Cancer Immunome Database 
(TCIA) (https://​tcia.​at/) [19].

Single‑cell sequencing data collection and processing
The single-cell dataset GSE207422 of resectable non-
small cell lung cancer (NSCLC) before and after PD-1 
blockade combined with chemotherapy was downloaded 
from Gene Expression Omnibus (GEO) database, and 
quality control was performed on the raw gene expres-
sion matrix using the Seurat R package. The following 
criteria were applied for filtering cells: exclusion of cells 
with less than 200 or more than 6000 expressed genes, 
those with the proportion of mitochondrial gene expres-
sion in UMI count was more than 20%, and filtering out 
genes expressed in fewer than 3 cells. After perform-
ing quality control on the raw gene expression matrix, 
we processed and analyzed the data using the following 
steps: Firstly, the transcript counts were log-transformed 
using the NormalizeData function. Subsequently, the 
FindVariableFeatures function was employed to select the 
top 2,000 genes with the highest variability within cells. 
Next, the ScaleData function was applied to normalize 
the gene expression data, ensuring comparability among 
genes. To reduce the dimensionality of the data and cap-
ture the major sources of variation, we performed linear 
Principal Component Analysis (PCA) using the Run-
PCA function from the Seurat package. To correct for 
batch effects, we employed the Harmony algorithm [20] 
based on the samples. For clustering analysis, we chose a 
clustering resolution of 0.6 to better distinguish distinct 
cell populations. Visualization of cell clusters was per-
formed using the Uniform Manifold Approximation and 

Projection (UMAP) dimensionality reduction technique. 
Finally, all cells were annotated based on the expression 
patterns of cell-specific marker genes.

Cell function scores
To define the functional states of myeloid cell clusters, 
the Ucell was used to calculate functional scores for each 
cluster based on known functional genes specific to mye-
loid cells.

Single‑cell trajectory inference
Monocle 3 [21] was applied to infer the cell differentia-
tion trajectories of myeloid cell clusters. The functions 
"cluster_cells" and "learn_graph" were used to partition 
the myeloid cells and fit the principal graph, while the 
UMAP visualization was employed to visualize the differ-
entiation trajectories. We selected CD14+ monocytes as 
the starting point to infer the cell differentiation trajecto-
ries of myeloid cells.

Cell–cell interaction analysis
For the analysis of cell–cell interactions, the CellChat 
[22] was utilized to predict the communication patterns 
of cell–cell receptors and ligands from the single-cell 
transcriptomic data. Special attention was given to the 
communication strength between myeloid cells and other 
cells in the tumor microenvironment.

Results
Patient characteristics at baseline
A total of 277 treatment-naïve patients with advanced 
non-small cell lung cancer, who were treated with first-
line anti-PD1 therapy in Sun Yat-sen University Cancer 
Center between August 3, 2018, and April 19, 2023 were 
enrolled in the study. Patients ranged in age from 32 to 
84  years old, with a median age of 62. Among all the 
included patients, 222 (80.1%) were males, 135 (48.7%) 
had an ECOG PS of 0, 183 (66.1%) were current or former 
smoker, 38 (13.7%) had liver metastasis and 95 (34.3%) 
had brain metastasis at baseline. In total, 233 (84.1%) 
patients received chemotherapy plus immunotherapy, 
38 (13.7%) received chemotherapy plus immunotherapy 
combined with antiangiogenic therapy, 3 (1.1%) received 
single-agent immunotherapy, and the other 3 received 
immunotherapy combined with antiangiogenic therapy. 
The baseline clinical characteristics of the patients were 
summarized in Table  1. Based on the median value of 
baseline ChE (7611 units/liter, U/L), all the patients were 
the stratified into two groups. Clinicopathological base-
line characteristics were comparable between the two 
groups (Table 2). Results showed that age, smoking sta-
tus, high ALB, low NLR, low CRP and low SAA were 
significantly associated with high baseline ChE level 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://tcia.at/
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(p < 0.05). At the last follow-up (December 4, 2023), 123 
(44.4%) patients died, the median progression-free sur-
vival time was 10.44 months (95% CI 8.37–12.50 months) 
and the median overall survival was 34.17 months (95% 
CI 30.47–37.86 months).

The prognostic values of baseline and early changes in ChE 
for survival
According to ChE levels at baseline (with the median 
value as the cut-off), all the patients were divided into 
two groups (low group: ChE < 7611 U/L; high group: 
ChE ≥ 7611 U/L). Based on the alteration levels of ChE 
after the treatment of immunotherapy, patients were also 
stratified into ChE reduction group and ChE elevation 
group. First, we explored a prognostic role for baseline 
ChE levels. Kaplan–Meier survival analysis and log-rank 
test showed that patients with high ChE at baseline had 

both significantly prolonged PFS [median PFS, 12.40 vs. 
9.37  months; HR = 0.72, (95% CI 0.54–0.96), p = 0.027; 
Fig.  1A] and OS [median OS, 37.73 vs. 27.20  months; 
HR = 0.59, (95% CI 0.41–0.85), p = 0.004; Fig.  1B] than 
those patients with low ChE at baseline. Second, the 
prognostic value of alteration levels of ChE was evalu-
ated. We noted the similar trend that patients with an 
elevation of ChE had better PFS [median PFS, 12.80 vs. 
6.97  months; HR = 0.56, (95% CI 0.42–0.75), p < 0.0001; 
Fig.  1C] and OS [median OS, 37.73 vs. 20.13  months; 
HR = 0.52, (95% CI 0.37–0.74), p < 0.0001; Fig.  1D] than 
those with a reduction of ChE.

For additional verification, patients were stratified into 
four groups by both baseline and the alteration of ChE 
after immunotherapy (baseline ChE low/high and the 
alteration of ChE reduction/elevation). Results indicated 
that the combination of both two prognostic factors 
improved risk stratification and prognostication for sur-
vival outcomes in advanced NSCLC (p < 0.0001) (Fig. 2). 
As expected, those with both high ChE at baseline as well 
as an elevation of ChE had the best survival outcomes of 
benefit (n = 83, median PFS = 14.00  months, median OS 
not reached). In addition, patients with either adverse 
prognostic feature (baseline low ChE or early reduc-
tion of ChE) had intermediate survival. While, Patients 
who had the low ChE at baseline and an early reduction 
of ChE after immunotherapy (n = 37) had the particu-
lar high risk of death and the worst survival outcomes, 
with a median PFS of 5.56 months and a median OS of 
12.43 months (Fig. 2A, B). Therefore, both baseline high 
ChE and an elevation of ChE were independently dis-
played a better clinical benefit from immunotherapy, and 
the combination of these two prognostic factors can fur-
ther improve risk stratification.

Univariate and multivariate cox regression analyses of PFS 
and OS
Based on the univariate analysis, liver metastasis 
(p < 0.001), bone metastasis (p = 0.006), baseline ChE 
(p = 0.027) and the alteration of ChE (p < 0.001) were 
significantly associated with PFS (Additional file  2: 
Table  S2). The multivariate Cox regression analysis 
revealed that liver metastasis (p = 0.001), bone metasta-
sis (p = 0.009), baseline ChE (p = 0.004) and the altera-
tion of ChE (p < 0.001) were the independent indicators 
of PFS. Furthermore, univariate and multivariate Cox 
regression analyses were also performed for identify-
ing OS prognostic factors. Univariate analysis revealed 
that factors associated with inferior OS included 
male, age ≥ 62  years old, current or former smoker, 
liver metastasis, bone metastasis, low ChE at baseline 
(p = 0.004), a reduction level of ChE (p < 0.001), low 
ALB, high CRP and high SAA. We further included 

Table 1  Patients characteristics at baseline (n = 277)

Data are expressed as the median or number (%)

n number of patients, ECOG-PS Eastern Cooperative Oncology Group 
performance status, ChE Cholinesterase

Characteristics No. of patients (%)

Age, years

 Median(range) 62 (32–84)

  < 62 139 (50.2)

  ≥ 62 138 (49.8)

Gender

 Male 222 (80.1)

 Female 55 (19.9)

ECOG-PS

 0 135 (48.7)

 1–2 142 (51.3)

Smoking status

 Never smoker 94 (33.9)

 Current or former smoker 183 (66.1)

Metastases (baseline)

 Liver 38 (13.7)

 Brain 95 (34.3)

 Bone 103 (37.2)

Treatment type

 Single-agent immunotherapy 3 (1.1)

 Immunotherapy + chemotherapy 233 (84.1)

 Immunotherapy + antiangiogenic therapy 3 (1.1)

 Immunotherapy + chemotherapy + antiangio-
genic therapy

38 (13.7)

Baseline ChE, U/L

  < 7611 138 (49.8)

  ≥ 7611 139 (50.2)

ChE alteration

 Reduction 92 (33.2)

 Elevation 185 (66.8)
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those significant clinicopathological parameters in 
univariate analysis into the multivariate model. Mul-
tivariate analysis revealed that baseline ChE (high vs. 
low, HR, 0.65; 95% CI 0.43–0.99; p = 0.047) and ChE 
alteration (elevation vs. reduction, HR, 0.51; 95% CI 
0.35–0.74; p < 0.001) were independent indicators for 
OS, others including age (< 62 vs. ≥ 62  years old, HR, 
0.67; 95% CI 0.46–0.98; p = 0.037), liver metastasis (Yes 
vs. No, HR, 1.73; 95% CI 1.09–2.75; p = 0.019) and bone 
metastasis (Yes vs. No, HR, 2.23; 95% CI 1.55–3.22; 
p < 0.001) at baseline (Table 3).

Prognostic nomogram for prediction of OS
The significant variables from the multivariate Cox anal-
ysis, including age, liver metastasis, bone metastasis, 
baseline ChE and alteration of ChE were used to estab-
lish a prognostic nomogram for OS. Each variable corre-
sponds to a specific point by drawing a line straight up 
to the score axis, and the total points were calculated by 
adding up the individual score of each of the 5 variables 
included in the nomogram. The probability of survival 
was demonstrated by making a vertical line from the 
total score axis to intersect the survival probability axis 

Table 2  Comparison of clinicopathological characteristics based on baseline ChE strata(n = 277)

Data are expressed as the median or number (%)

n number of patients, ECOG-PS Eastern Cooperative Oncology Group performance status, ChE Cholinesterase, LDH lactate dehydrogenase, ALB serum albumin, NLR 
neutrophil-to-lymphocyte ratio, CRP C-reactive protein, SAA serum amyloid A
Φ p values in boldface indicate p < 0.05

Characteristics ChE < 7611 (n = 139)
n (%)

ChE ≥ 7611 (n = 138)
n (%)

p valueΦ

Age, years 0.010
 Median(range) 62 (32–84) 61 (31–77)

  < 62 81 (58.3) 58 (42.0)

  ≥ 62 58 (41.7) 80 (58.0)

Gender 0.066

 Male 118 (84.9) 104 (75.4)

 Female 21 (15.1) 34 (24.6)

ECOG-PS 0.765

 0 66 (47.5) 69 (50.0)

 1–2 73 (52.5) 69 (50.0)

Smoking status 0.007
 Never smoker 36 (25.9) 58 (42.0)

 Current or former smoker 103 (74.1) 80 (58.0)

Metastases (baseline)

 Liver 24 (17.3) 14 (10.1) 0.122

 Brain 47 (33.8) 48 (34.8) 0.965

 Bone 55 (39.6) 48 (34.8) 0.484

LDH, U/L 0.133

  < 210 63 (45.3) 76 (55.1)

  ≥ 210 76 (54.7) 62 (44.9)

ALB, g/L  < 0.001
  < 42 99 (71.2) 40 (29.0)

  ≥ 42 40 (28.8) 98 (71.0)

NLR 0.005
  < 3.18 57 (41.0) 81 (58.7)

  ≥ 3.18 82 (59.0) 57 (41.3)

CRP, mg/L  < 0.001
  < 11 47 (33.8) 93 (67.4)

  ≥ 11 92 (66.2) 45 (32.6)

SAA, mg/L  < 0.001
  < 20 49 (35.3) 90 (65.2)

  ≥ 20 90 (64.7) 48 (34.8)
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of 1, 2, and 3  years (Fig.  3A). Prognostic accuracy and 
predictive value of nomogram were evaluated using the 
time-dependent ROC curves and AUC. The AUC values 
in the ROC curve analysis showed a good accuracy, with 
the AUC values of 1-, 2-, and 3-year survival probability 
of 0.705, 0.743 and 0.691 (Fig. 3B). The calibration plots 
demonstrated satisfactory consistency between the nom-
ogram-predicted OS and actual observed probability of 
OS at 1-, 2- and 3-year (Additional file 3: Fig. S2A).

Based on the constructed nomogram, we calculated 
the total risk score for the enrolled NSCLC patients, and 
all of them were then divided into high-risk and low-risk 
groups, according to the median value of total point. As 
showed in the Kaplan Meir curve, a significant difference 
in OS were observed that patients in the high-risk group 
had remarkably worse survival outcomes than patients in 
the low-risk group (p < 0.0001) (Fig. 3C). Finally, the plot-
ted decision-curve analysis (DCA) curve demonstrated 
the clinical validity and usefulness of the model (Addi-
tional file 3: Fig.S2B).

Construction and verification of choline 
metabolism‑related genes signature
To further explore the gene changes and specific mech-
anisms related to choline metabolism, we obtained 
bulk RNA-seq data and clinical information of LUAD 
patients from TCGA database (https://​cance​rgeno​me.​
nih.​gov/). “Limma” package in R was used to identify 
DEGs between LUAD and normal tissues (Fig. 4A). The 
Venn diagrams were plotted to show the overlap between 
DEGs in LUAD and choline metabolism-related genes 
obtained from KEGG, Reactome Path and AmiGO2 data-
bases (Fig.  4B). We finally screened 36 choline metab-
olism-related DEGs, including 14 upregulated genes 
and 22 downregulated genes. Subsequently, univariate 
and multivariate Cox regression analysis of the choline 
metabolism-related DEGs were performed and we finally 
obtain four choline metabolism-related prognostic genes 
(MTHFD1, PDGFB, PIK3R3, CHKB) (Fig. 4C).

According to the formula Risk score = 0.311 × MTHF
D1 + (0.204) × PDGFB + (−0.277) × PIK3R3 + (−0.207) 

Fig. 1  Kaplan–Meier curves of PFS (A) and OS (B) in patients with low/high ChE at baseline. Kaplan–Meier curves of PFS (C) and OS (D) in patients 
with decreased/increased levels of ChE after immunotherapy

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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Fig. 2  Kaplan–Meier curves of PFS (A) and OS (B) according to the combination of baseline ChE and the alteration of ChE after immunotherapy
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× CHKB, the risk score of each patient in TCGA-LUAD 
(training cohort) and Orient-11 study (validation cohort) 
was calculated. All the patients were divided into high-
risk group and low-risk group based on the median value 
of risk score. Kaplan–Meier survival analysis demon-
strated a significant difference in overall survival between 
two risk group, with the patients in high-risk group hav-
ing poorer survival and higher risk of death for both 
training (p = 0.00023) (Fig.  4D) and validation cohort 
(p = 0.00039) (Fig.  4E). Additionally, we performed 
ROC curves and calculated AUCs of both training and 
validation cohorts. Results showed that the ROC curve 
had acceptable sensitivity and specificity, indicating 
the satisfactory prognostic and predictive power of the 
constructed choline metabolism-related signature (Addi-
tional file 3: Fig. S2C-D).

Choline metabolism signature was associated 
with immunosuppressive tumor microenvironment
We performed the GSEA analysis used those upregu-
lated and statistically significant DEGs in the high-risk 
group of the choline metabolism signature and results 
showed that multiple cancer-related pathways, including 
cell cycle, extracellular matrix (ECM) receptor interac-
tion, cell motility, P53 and PI3k-Akt signaling were sig-
nificantly enriched (Fig. 5A, Additional file 4: Fig. S3A). 
These results suggested that the high-risk of choline 
metabolism signature may have stronger ability of tumor 
cell growth, proliferation, invasion and metastasis of lung 
cancer. To further investigate the association between the 

choline metabolism signature and the immune micro-
environment, we used the “IOBR” R package to calcu-
late the scores of tumor microenvironment-related gene 
sets in the high-risk and low-risk groups of patients in 
TCGA-LUAD. We found that the gene sets related to 
lymphocytes, B cells and Mast cells were down-regulated 
in high-risk patients, whereas the gene sets related to 
macrophages, CAF cells and endothelial cells were signif-
icantly up-regulated (Fig. 5B–D). By comparing the score 
of metabolism-related gene sets, significant differences 
in multiple metabolism-related pathways were found 
between high-risk and low-risk group, suggesting the 
phenomenon of metabolic reprogramming in patients 
with high-risk (Fig.  5E). Furthermore, TIDE scores in 
high-risk group of choline metabolism signature were 
considerably greater than those in the low-risk group 
(Fig. 5F). Consistently, patients in the high-risk group of 
choline metabolism possessed a worse response rate to 
ICIs (ctla4_pos_pd1_neg, ctla4_neg_pd1_neg, p < 0.001, 
Fig.  5G), indicating that higher risk of choline metabo-
lism may have stronger ability of immune evasion and 
immunotherapy resistance. Collectively, the above results 
suggested that patients in high-risk group were charac-
terized by immunosuppressive tumor microenvironment.

MTHFD1 was specifically expressed in tumor‑associated 
macrophages (TAMs) and mediated immunosuppressive 
functions
To further explore how choline metabolism mediates the 
immunosuppressive tumor microenvironment in NSCLC 

Table 3  Predictive factors for OS by univariate and multivariate analysis

OS overall survival, ECOG-PS Eastern Cooperative Oncology Group performance status, ChE Cholinesterase, LDH lactate dehydrogenase, ALB serum albumin, NLR 
neutrophil-to-lymphocyte ratio, CRP C-reactive protein, SAA serum amyloid A, HR Hazard ratio, CI Confidence interval
Φ Values in boldface indicate p < 0.05

Univariate analyses Multivariate analyses

HR (95%CI) p valueΦ HR (95%CI) p valueΦ

Gender Male vs. Female 1.92 (1.15–3.21) 0.013 1.39 (0.72–2.67) 0.324

Age  < 62 vs. ≥ 62 0.55 (0.38–0.79) 0.001 0.67 (0.46–0.98) 0.037
ECOG-PS 1–2 vs. 0 1.21 (0.85–1.72) 0.298

Smoking status Yes vs. No 1.64 (1.10–2.42) 0.014 1.03 (0.63–1.70) 0.901

Liver metastasis Yes vs. No 2.04 (1.30–3.19) 0.002 1.73 (1.09–2.75) 0.019
Brain metastasis Yes vs. No 0.88 (0.59–1.30) 0.511

Bone metastasis Yes vs. No 2.29 (1.60–3.27)  < 0.001 2.23 (1.55–3.22)  < 0.001
Baseline ChE, U/L  ≥ 7611 vs. < 7611 0.59 (0.41–0.85) 0.004 0.65 (0.43–0.99) 0.047
ChE alteration, U/L  ≥ 0 vs. < 0 0.52 (0.37–0.74)  < 0.001 0.51 (0.35–0.74)  < 0.001
LDH, U/L  ≥ 210 vs. < 210 0.99 (0.70–1.41) 0.967

ALB, g/L  ≥ 42 vs. < 42 0.65 (0.46–0.93) 0.018 0.97 (0.61–1.55) 0.897

NLR  ≥ 3.18 vs. < 3.18 1.21 (0.85–1.73) 0.284

CRP, mg/L  ≥ 11 vs. < 11 1.86 (1.30–2.67) 0.001 1.39 (0.72–2.69) 0.321

SAA, mg/L  ≥ 20 vs. < 20 1.70 (1.19–2.44) 0.004 1.04 (0.55–1.97) 0.907
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patients, single-cell sequencing data (GSE207422) 
were downloaded from GEO database, which con-
tained fresh tumor samples from 3 pre-treatment and 

12 post-treatment patients with NSCLC who received 
anti-PD-1 therapy combined with chemotherapy. After 
performing quality control on the samples, removing 

Fig. 3  Construction of a prognostic nomogram. A Prognostic nomogram for predicting the probability of 1-, 2- and 3-year OS in NSCLC 
patients after immunotherapy. B Time-dependent ROC curves and AUCs at 1-, 2-, and 3- year- were plotted to verify the prognostic accuracy 
of the nomogram. C Kaplan–Meier curves for OS with risk stratification
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Fig. 4  Choline metabolism signature based on RNA-seq analysis. A Identification of DEGs between tumor and normal tissues in TCGA-LUAD 
through transcriptomic sequencing data analysis and functional enrichment analysis. B Venn diagram demonstrating the intersections of DEGs 
and choline metabolism-related genes. C Forest plot of multivariate Cox regression analysis. D–E Kaplan–Meier survival curves, risk scores 
and survival status of the low- and high-risk groups of choline metabolism in training cohort (D) and validation cohort (E)

(See figure on next page.)
Fig. 5  Immune cells infiltration, function enrichment analysis and immune evasion. A PI3k-Akt signaling pathway highly expressed in high-risk 
of choline metabolism. B–C Differential analysis of immune cell types composition (B) and subtypes of macrophages (C). D Estimating 
the Proportion of Immune and Cancer cells (EPIC) of different risk groups. E Comparison of metabolism-related gene sets in different risk groups. 
F–G Immune evasion and response. F TIDE score of the low- and high-risk groups of choline metabolism. G Sensitivity analysis of the two risk 
groups to immunotherapy. ns non-significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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Fig. 5  (See legend on previous page.)
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batch effects by Harmony analysis, we finally obtained 
11 cell types by clustering in reduced dimensions and 
manual annotation (Fig.  6A). We found that MTHFD1 
was mainly expressed in myeloid cells (monocytes & 
macrophages) and mast cells, while PDGFB was mainly 
expressed in endothelial cells (Fig. 6B, C). Our previous 
results demonstrated that multiple macrophage path-
way scores were significantly up-regulated in high-risk 
patients, we further explored the expression of MTHFD1 
in myeloid cells. After further grouping and annotation 
of myeloid cells, 6 subgroups of myeloid cells can be 
obtained (Fig.  6D). We found that MTHFD1 expression 
gradually increased as monocytes differentiate into mac-
rophages and it was mainly expressed in CCL18+ mac-
rophages (Fig. 6E), and meanwhile CCL18 expression was 
up-regulated in TCGA-LUAD patients with high-risk 
(Additional file  3: Fig. S2E), suggesting that MTHFD1 
may be implicated in immunosuppressive macrophage 
differentiation of NSCLC. Ucell score was then used to 
calculate the functional characteristics of 6 myeloid cell 
subsets, and results showed that CCL18+ macrophage 
had both a higher anti-inflammatory related score and a 
lower pro-inflammatory related score (Fig.  6F), suggest-
ing that CCL18+ macrophage belonged to immunosup-
pressive subsets. To infer the developmental trajectory 
of myeloid cells, monocle3 (v0.2.1) was used to perform 
pseudotime analysis and results indicated that the subset 
of CCL18+ macrophages belonged to the endpoint of dif-
ferentiation (Fig. 6G).

To deepen the understanding of the connection 
between MTHFD1 and macrophages polarization, we 
stratified all TCGA-LUAD patients into low and high 
expression groups of MTHFD1 based on the median 
level. We observed that high expression of MTHFD1 
was correlated with elevated level of M2-like mac-
rophages, consistent with previous findings associating 
high-risk group of choline metabolism with increased 
M2-like macrophages (Additional file  4: Fig. S3B). Fur-
thermore, GSEA showed the downregulation of M1-like 
macrophages-related gene sets in MTHFD1-high patient 
tumors compared with MTHFD1-low patient tumors 
(Additional file  4: Fig. S3C). Correlation analysis veri-
fied a positive association between MTHFD1 expression 
and CCL18+ immunosuppressive macrophages, collec-
tively indicating that increased level of MTHFD1 may be 

associated with the polarization and immunosuppressive 
functions of macrophage in the tumor microenvironment 
(Additional file 4: Fig. S3D).

Abnormal choline metabolism may affect endothelial 
cell proliferation by mediating the differentiation 
of macrophages
Those post-treatment samples of single-cell sequenc-
ing data were further divided into two groups based on 
Response Evaluation Criteria in Solid Tumors Version 
(RECIST): partial-response group (PR; n = 8) and stable-
disease group (SD; n = 4). We found that patients in the 
SD group had a higher expression of MTHFD1 (Fig. 7A), 
suggesting that higher expression of MTHFD1 may be 
associated with poor efficacy of immunotherapy. At the 
same time, by comparing the proportion of 6 myeloid 
cell subsets in PR and SD group, a significant difference 
was observed in the proportion of CCL18+ macrophages 
between two groups, with SD group exhibiting a higher 
proportion (Fig. 7B). These results above suggested that 
the expression of MTHFD1 was associated with the 
immunosuppressive functions of CCL18+ macrophages 
and may account for poorer immunotherapeutic effect.

PDGFB, another risk gene of choline metabolism in 
this study, was mainly expressed in endothelial cells as 
mentioned above (Fig. 6B, C). It was reported in previous 
research that higher expression of PDGFB in gastric can-
cer promoted angiogenesis in metastases via activation 
of the MAPK/ERK signaling pathway in endothelial cells 
[23]. Thus, it was reasonable to speculate that the immu-
nosuppressive functions of macrophages in abnormal 
choline metabolism may be associated with the prolif-
eration of endothelial cells to some extent. CellChat was 
next performed to identify the intercellular communica-
tion and results showed that endothelial cells had strong 
communication with myeloid cells (Fig.  7C), which was 
consistent with our previous findings that endothelial 
cell gene set scores were up-regulated in patients of high-
risk. Furthermore, we next compared the differences in 
intercellular communication between endothelial cells 
and myeloid subsets of PR and SD group. Results showed 
that FN1- (ITGA5 + ITGB1) signaling pathway mediating 
the strongest communication probability from CCL18+ 
macrophages to endothelial cells in SD group (Fig.  7D), 
while this phenomenon was not significant in PR group. 

Fig. 6  Single-cell sequencing data analysis. A Cell type annotation of 77,227 cells using uniform manifold approximation and projection (UMAP) 
plots. Feature plots (B) and grid violin plot (C) of single-cell dataset demonstrating expression of MTHFD1 and PDGFB across the 11 cell types. 
D UMAP showing grouping and annotation of myeloid cells. E Expression of MTHFD1 in different subgroups of myeloid cells. F Functional 
characteristics of 6 myeloid cell subsets calculated by Ucell score. G Pseudotime trajectory analysis of myeloid cells subsets. ns non-significant; 
***p < 0.001; ****p < 0.0001

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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The hierarchy plot showed that CCL18+ macrophages 
were the most important sender in FN1 signaling path-
way, endothelial cells were mainly the receiver, and both 
of them acquired high influencer scores (Fig.  7E), indi-
cating a high capacity of the influencing information 
flow. By comparing the expression distribution of sign-
aling genes involved in the inferred FN1 signaling net-
work, a higher expression level of FN1 was observed in 
CCL18 macrophages of SD group compared with that 
of PR group (Fig. 7G). Finally, further correlation analy-
sis indicated that there was a strong correlation between 
FN1 and MHTFD1 expression in TCGA-LUAD cohort 
(Fig. 7F). Previous studies have found that FN1 as well as 
ITGA5 could facilitate tumor angiogenesis and progres-
sion in cervical cancer [24, 25] and may be a prognostic 
risk factor in many types of cancer including Gliomas, 
gastric cancer, head and neck squamous cell carcinoma 
and NSCLC [26–30]. Above all, our results suggested 
that overexpression of MTHFD1 in abnormal choline 
metabolism contributes to the immune suppressive 
polarization in macrophages, further promoting the pro-
liferation of endothelial cells. Together, these processes 
jointly shape the immunosuppressive microenviron-
ment of NSCLC, ultimately mediating the occurrence of 
immunotherapy resistance.

Discussion
Lung cancer is the leading cause of cancer and cancer-
related death worldwide [31], imposing a tremendous 
health and financial burden. NSCLC accounts for 85% 
to 90% of lung cancer, and are mostly diagnosed at an 
advanced (locally advanced or metastatic disease) stage 
with a poor prognosis. Deregulation of metabolism has 
widely been recognized to play an important role in a 
variety of malignancies, due to its impact on tumor devel-
opment, progression and treatment response [32, 33]. For 
instance, choline metabolism has been extensively stud-
ied in cancer research. Choline, a central metabolite in 
human metabolism, is an essential nutrient and methyl 
donor for epigenetic regulation [34, 35]. In normal physi-
ological conditions, ChE is a key enzyme responsible for 
catalyzing the hydrolysis of ACh into choline and acetic 
acid [10], playing a crucial role in maintaining a balanced 

choline metabolism. Loss or defects in ChE expression or 
activity, as well as abnormal choline metabolism, could 
influence on the cell growth, motility and invasion capa-
bility of tumor cells. Understanding the mechanisms 
of choline metabolic changes in lung cancer may pro-
vide valuable insights for developing novel therapies to 
improve the survival outcomes of patients.

In this study, we confirmed that ChE level was signifi-
cantly associated with survival outcomes of patients with 
advanced NSCLC undergoing immunotherapy. Patients 
with high ChE at baseline or an elevation of ChE after 2 
cycles of immunotherapy had better clinical outcomes 
and response to immunotherapy. Moreover, univariate 
and multivariate Cox regression analysis showed that 
ChE, both at baseline and the early changes, were inde-
pendent prognostic factors and had satisfactory prog-
nostic accuracy and predictive value when included in 
the constructed nomogram. Therefore, monitoring the 
pretreatment as well as the dynamic changes in ChE level 
might contribute to powerful and effective biomarkers 
to identify the NSCLC patients who will probably most 
benefit from immunotherapy. Due to the convenience 
and cost-effectiveness of monitoring ChE, it makes it eas-
ier for clinical implementation.

To understand the mechanisms of choline metabolic 
changes, we further investigated the role of choline 
metabolism in lung cancer. Based on the TCGA-LUAD 
databases and the gene sets of choline metabolism-
related genes, we obtained a signature of four choline 
metabolism-related prognostic genes, including two risk 
genes (MTHFD1, PDGFB) and two protection genes 
(PIK3R3, CHKB). TCGA-LUAD database was used as 
training cohort and orient-11 database was used as vali-
dation cohort. The overall survivals of patients in the 
high-risk group were significantly worse than those in the 
low-risk group. Also, the AUCs of the training cohort at 
1 and 3  years were 0.634 and 0.618, suggesting that the 
choline metabolism-related signature has effective and 
reliable predictive power for the prognosis of LUAD 
patients.

The tumor microenvironment (TME) consists of cel-
lular components (tumor cells, immune cells, fibro-
blasts, endothelial cells, and various stromal cells) and 

(See figure on next page.)
Fig. 7  Cell–cell communication between endothelial cells and myeloid cells subsets. A Comparison of the expression level of MTHFD1 
in partial-response (PR) group and stable-disease (SD) group. B Bar charts of 6 myeloid cell subsets proportions in PR and SD group. C Circle plot 
of the cell–cell communication between endothelial cells and myeloid cells subsets. D Bubble plot shows the ligand-receptor pairs contributing 
to the signaling from myeloid cells subsets to endothelial cells. E CellChat heat map showing the sender, receiver, mediator and influencer roles 
of endothelial cells and myeloid cells subsets for the FN1 signaling pathway. Color intensity shows the importance of the cluster contribution 
to each role. Dark green, high; white, low importance. F Correlation analysis between the expression level of FN1 and MHTFD1 in TCGA-LUAD 
cohort. G Violin plot showing the comparison of the expression distribution of FN1 signaling ligand and receptor genes in endothelial cells 
and myeloid cells subsets of PR and SD groups
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Fig. 7  (See legend on previous page.)
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non-cellular components (extracellular matrix compo-
nents, signaling molecules, cytokines, chemokines, and 
growth factors) [36, 37]. TME provides a supportive 
niche for tumor cells, facilitating their survival, prolifera-
tion, and evasion of immune responses [37]. However, 
the balance between pro- and anti-tumorigenic immune 
responses within TME is critical in determining tumor 
fate. Tumor-associated immune cells, such as TAMs, 
dendritic cells, and T cells, can possess either tumor-
antagonizing or tumor-promoting functions depending 
on the context [38, 39]. Recently, the administrations 
of immunotherapy have brought a new era for cancer 
therapy, and it has been widely reported that the het-
erogeneity in TME shows a profound association with 
the tumor progression and responsiveness to immuno-
therapy [40]. In this study, we found that those gene sets 
related to macrophages, CAF cells and endothelial cells 
were significantly up-regulated in the high-risk group 
of choline metabolism. The proportion of anti-inflam-
matory was significantly elevated in high-risk group, 
which are reported be mainly involved in immunosup-
pression, tumorigenesis and metastasis [41]. Meanwhile, 
Endothelial cells could facilitate tumor angiogenesis and 
metastasis, create a physical barrier and secrete immu-
nosuppressive [41, 42], which are key stromal compo-
nents of the TME. Moreover, a significant phenomenon 
of metabolic programming and a higher score of TIDE 
were observed in high-risk group, indicating increased 
immune evasive potential and decreased responsive-
ness to immunotherapy. In summary, abnormal choline 
metabolism may contribute in the formation of immuno-
suppressive microenvironment, strengthen the capacity 
of immune escape and finally result in the poor effective 
of immunotherapy.

MTHFD1, methylenetetrahydrofolate dehydrogenase 
1, plays a crucial role in choline metabolism by par-
ticipating in the transfer and metabolism of one-carbon 
units [43]. MTHFD1 is reversibly catalyze the stepwise 
oxidation from 5,10-CH2-THF to 10-CHO-THF, and 
the conversion of 10-CHO-THF to THF [44], provid-
ing methyl donors for choline synthesis and maintain-
ing normal choline levels. MTHFD1 is reported to be a 
potential oncogene in tumorigenesis, with a high expres-
sion in tumor cells. Excessive expression and activity 
of MTHFD1 may sustain high proliferative capacity of 
tumor cell, enhance invasive and metastatic capabilities, 
influence apoptosis and cell cycle regulation pathways, 
and be associated with poor prognosis and increased 
risk of recurrence in tumors [45–47]. In our study, we 
found that MTHFD1 is highly overexpressed in LUAD 
of TCGA database. Further single-cell analysis showed 
that MTHFD1 is specifically highly expressed in CCL18+ 
macrophages, which is consistent with our previous 

findings indicating enrichment of the macrophage path-
way in high-risk patients. CCL18 is a chemokine secreted 
by tumor-associated macrophages that promotes a pro-
tumor microenvironment by inducing a pro-tumor 
(M2-like) macrophage phenotype [48]. CCL18 is involved 
in tumor invasion, migration, epithelial-to-mesenchymal 
transition (EMT), and angiogenesis, ultimately contrib-
uting to cancer progression [49]. Also, it is reported that 
CCL18+ macrophages could activate NF-κB pathway 
in fibroblasts and induce the stemness and resistance of 
cancer cells [50].In this study, pseudotime analysis was 
performed to gain further insight into mechanisms and 
results indicated that MTHFD1 expression increases dur-
ing monocyte-to-macrophage differentiation, suggesting 
its role in immunosuppressive macrophage differentia-
tion in NSCLC. To validate the correlation between the 
MTHFD1 and macrophage polarization, we also strati-
fied patients based on the median level of MTHFD1. 
High expression of MTHFD1 was observed with elevated 
level of M2-like macrophages, along with downregula-
tion of M1-like macrophages-related gene sets. Correla-
tion analysis also verified a positive association between 
MTHFD1 expression and CCL18+ macrophages. Our 
findings collectively suggested that MTHFD1 may con-
tribute to the immunosuppressive functions of CCL18+ 
macrophages and potentially lead to a poorer immuno-
therapeutic response.

Previous studies have demonstrated that high expres-
sion of FN1 is associated with poorer survival outcomes 
and treatment efficacy in multiple cancers [51, 52]. FN1 
also plays a significant role in the tumor microenviron-
ment. It is closely related to tumor proliferation, inva-
sion, EMT processes and immune infiltration levels [53]. 
Moreover, it has been reported that macrophages can 
drive resistance through the cytokine activin A, which 
induces the FN1-ITGA5-SRC signaling cascade [54]. In 
our study, the upregulation of the FN1 signaling path-
way between CCL18+ macrophages and endothelial cells, 
particularly in the non-responder group, indicated their 
potential role in promoting endothelial cell prolifera-
tion and tumor angiogenesis in NSCLC patients. Strong 
correlations between FN1 and MTHFD1 expression 
were observed in both single-cell sequencing data and 
the TCGA cohort, further supporting their association 
in NSCLC. These findings provide insights into the role 
of MTHFD1 in NSCLC pathogenesis and highlight its 
potential as a therapeutic target.

Undeniably, this study has several limitations. Firstly, 
it is important to note that the retrospective design 
and the use of a moderate sample size from a single 
cancer institution may limit the generalizability of the 
findings regarding the association between ChE and 
clinical outcomes. Secondly, the utilization of research 
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data (transcriptomic or single-cell datasets) from pub-
lic databases such as TCGA, GEO, KEGG introduces 
potential limitations and incomplete information, 
emphasizing the need for validation with a larger sam-
ple size to ensure accurate and generalizable findings. 
Finally, gaining a comprehensive understanding of the 
specific molecular mechanisms involved in the cho-
line metabolism-related signature in the pathogenesis 
of lung cancer requires additional molecular biology 
experiments.

Conclusion
In conclusion, our study emphasizes the initial discovery 
of the prognostic value of ChE in advanced non-small cell 
lung cancer, highlighting its potential as a valuable and 
cost-effective marker to identify patients who are more 
likely to benefit from immunotherapy. Furthermore, this 
study developed a prognostic signature for lung adeno-
carcinoma based on choline metabolism-related genes, 
demonstrating its correlation and impact on the immu-
nosuppressive microenvironment. Specifically, the study 
uncovers the overexpression of MTHFD1 in abnor-
mal choline metabolism was intimately associated with 
TAMs, shedding light on its role in immunosuppressive 
macrophage differentiation and endothelial cell prolifera-
tion, thus providing valuable insights into the intricate 
workings of choline metabolism in NSCLC pathogenesis.
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