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Artificial intelligence assists identification 
and pathologic classification of glomerular 
lesions in patients with diabetic nephropathy
Qunjuan Lei1, Xiaoshuai Hou2, Xumeng Liu1, Dongmei Liang1, Yun Fan1, Feng Xu1, Shaoshan Liang1, 
Dandan Liang1, Jing Yang1, Guotong Xie2,3,4*, Zhihong Liu1* and Caihong Zeng1*   

Abstract 

Background Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index 
for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative 
and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed.

Methods A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morpho-
logic features in DN patients. Associations of these digital features with pathologic classification and prognosis were 
further analyzed.

Results Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kim-
melstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three 
glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, 
and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glo-
meruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). 
Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, 
the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). 
Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predict-
ing baseline and long-term renal function.

Conclusion Our CNN-based model is promising in assisting the identification and pathologic classification of glo-
merular lesions in DN patients.
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Introduction
Diabetic nephropathy (DN) is one of the main causes of 
chronic kidney disease worldwide [1]. Patients with DN 
are characterized by continuously progressive proteinuria 
and renal function decline, and most of them are diag-
nosed with clinical characteristics without undergoing 
renal biopsy. However, previous studies have reported 3% 
to 82.9% incidence of nondiabetic renal diseases among 
patients with diabetes [2]. Recently, renal biopsy has 
still been the gold standard for clarifying injury patterns 
among patients with diabetes.

The glomerular lesion, the main pathological feature 
of DN [3, 4], covers a spectrum of lesion manifesta-
tions, mainly involving mesangial cell proliferation [5, 6], 
mesangial matrix accumulation [3, 4], Kimmelstiel-Wil-
son lesion [4], and podocyte depletion [7–9]. Currently, 
a widely used standard for pathologic classification, pro-
posed by the Renal Pathology Society (RPS) in 2010, is 
based on the evaluation of above glomerular morpholog-
ical features [4] and has been verified to show significant 
prognostic value among patients with DN [10]. In clinical 
practice, these morphological features are evaluated visu-
ally by pathologists using qualitative or semi-quantitative 
methods. For intraglomerular features (e.g., mesangial 
region, intrinsic cells), several complicated methods 
such as Weibel and Gomez method, disector/fractiona-
tor combination, and Wiggins method were reported to 
quantify them [11, 12]. However, these methods require 
extra procedures for slide preparations (e.g., special 
staining procedure) and manual counting, which is time-
consuming in the clinical setting. There need for a more 
rapid or automatic method to quantify glomerular mor-
phological features just using routine-stained sections to 
assist pathologist’s routine-work.

Deep learning paves the way for a paradigm shift from 
descriptive to quantitative pathology and has the poten-
tial to augment renal pathologists [13, 14]. Convolu-
tional neural networks (CNN), one of the most popular 
deep learning algorithms at present, have outperformed 
other deep learning algorithms in automatic image anal-
ysis [15, 16]. In the field of renal pathology, deep learn-
ing algorithms have been applied successfully to identify 
glomeruli, tubules, and interstitium in digital slides from 
transplant biopsies [17] or patients with Minimal Change 
Disease [18]. However, these studies didn’t further rec-
ognize the intraglomerular features and just only used 
relatively normal and lightly damaged tissue. Ginley et al. 
[19] developed a machine learning method to extract 
intraglomerular features compounded by color, texture, 
and nucleus distance in patients with diabetic kidney dis-
ease. Those features were used to train a deep learning 
network to classify glomerular lesions which obtained 
moderate agreement with pathologists. However, those 

features couldn’t directly correspond to any actual glo-
merular compartments or lesions, making it relatively 
difficult to explain.

Our center has established an analytic renal pathol-
ogy system (ARPS, integrated by multiple well-trained 
networks) to automatically detect glomeruli types and 
intrinsic cells by utilizing routine PAS-stained sections 
from IgA nephropathy (IgAN) patients [20]. This study 
aimed to design the CNN-based model to automatically 
quantify actual glomerular morphological features in a 
large sample of DN patients, including the types of glo-
merular lesions and intraglomerular features. The quanti-
fied glomerular features will be used to assist pathologic 
classification and prognosis evaluation.

Methods
This retrospective study consists of four main parts as 
follows: (i) training CNN model to identify glomeruli 
types and intraglomerular features, (ii) characterizing 
glomerular morphological features, (iii) clinical appli-
cation 1: CNN-based-pathologic classification versus 
pathologists-based classification, (iv) clinical applica-
tion 2: associations of CNN-based classes with baseline 
and long-term renal function versus that of pathologists-
based classes. This study follows the principles of the 
Helsinki Declaration and was approved by the Ethics 
Committee of Jinling Hospital (2019NZKYKS-008-01).

Identifying glomerular morphological features
Digital slides preparation
The detailed patient’s clinical information was described 
in Additional file 1: Supplementary Method I. All patients 
have undergone a percutaneous renal puncture biopsy 
under ultrasound. Biopsy tissue specimens for light 
microscopy were fixed in formalin and embedded in par-
affin. Slices (2-μm thickness) were routinely stained with 
hematoxylin–eosin, periodic acid–Schiff (PAS), peri-
odic acid-silver methenamine, and Masson’s trichrome. 
Archival PAS-stained slides were scanned by Aperio’s 
ScanScope AT Turbo Scanner (Leica, Wetzlar, Germany) 
under 40× magnification at a resolution of 0.25 μm/pixel. 
Those whole slide images (WSIs) having obvious com-
pression artifacts or decolorization were excluded for 
quality control.

CNN design
To construct a CNN architecture that can appropri-
ately categorize glomeruli types in patients with DN, 
the following subcategories of glomeruli were applied: 
global glomerulosclerosis (GS), segmental glomerulo-
sclerosis (SS), crescent (C), Kimmelstiel-Wilson lesion 
(KW), and none of the above lesions (NOA). Regions 
excluding glomeruli were defined as negative samples 
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(Neg). The glomeruli on PAS-stained WSI slides were 
annotated by an experienced junior pathologist (who 
has at least 3 years experience in renal pathology) using 
Aperio’s ImageScope software through labeling along 
the margin of Bowman capsule and tagging on their 
subcategories. To improve the model performance on 
identifying KW lesions for further pathologic clas-
sification, when a glomerulus had KW lesions accom-
panied by another lesion such as SS or C lesion, it was 
still annotated as a KW glomerulus. These annotations 
were checked by three senior pathologists (who all have 
more than 10 years experience, signed about 1600 renal 
biopsy reports per year, and participated in the study of 
the Oxford Classification of IgAN [21, 22]). The above 
WSI images and annotation information were utilized 
to train the CNN model. The detailed CNN training 
procedure is described in Additional file 1: Supplemen-
tary Methods II. Figure 1 depicts the detailed training 
process of the above CNN models. The testing data 
were used for evaluating the above classification mod-
els (glomeruli types identification and intrinsic cells 
prediction) and segmenting model (mesangial area seg-
mentation). The detailed evaluation procedures were 
described in Additional file 1: Supplementary Methods 
III. Our CNN Model is developed on PyCharm Com-
munity v2021.1.1 and PyTorch v1.8.1 platform. The 

CNN algorithms were uploaded to the GitHub website 
(https:// github. com/ xavie rhou/ kidney_ patho logy_ AI).

Characterizing glomerular morphological features
The above well-trained CNN networks were used to iden-
tify glomeruli types and further quantify intraglomerular 
features (mesangial area and three intrinsic cells) in a 
large sample of DN patients. The percent glomeruli types 
were calculated to reveal the involvement extent of such 
type in one patient. The detailed calculating methods for 
intraglomerular features in one patient were described in 
Additional file  1: Supplementary Methods IV. The glo-
merular lesions were classified by three senior patholo-
gists using the standard proposed by RPS in 2010 [4].

CNN‑based classification versus pathologists‑based 
classification
Based on the above glomeruli types and intraglomeru-
lar features quantified by our CNN methods, we tried 
to classify glomerular lesions according to the RPS 
standard. Firstly, patients with percent GS > 50% were 
picked out as class IV. Patients with the presence of KW 
lesions and with percent GS ≤ 50% were assigned to class 
III. Then, the receiver operating characteristic (ROC) 
curve of each measured intraglomerular morphomet-
ric for pathologists-based classes was performed. The 

Fig. 1 Schematic illustration of our CNN model for identifying glomerular morphological features. A The training procedure of EfficientNet 
architecture for identifying different glomeruli types. B The training procedure of U-Net architecture for segmenting mesangial area 
and the verification procedure of our prior V-Net architecture for identifying three glomerular intrinsic cells. Scale bars mean 750 μm in WSIs 
and 50 μm in single glomerulus images

https://github.com/xavierhou/kidney_pathology_AI
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area under the ROC curve (AUC) was used to evaluate 
the predictive capacity of each morphometric on classi-
fying the remaining patients (not satisfying class IV and 
class III). The optimal cutoff value of the intraglomeru-
lar morphometric with a larger AUC value was used to 
assign patients from class I to class IIb. Furthermore, 
Cohen’s kappa value was used to evaluate the consistency 
between CNN-based classification and that by senior 
pathologists.

Associations of CNN‑based classification with baseline 
clinical indicators and long‑term prognosis
Patients were performed follow-up commonly at 3- to 
6-month intervals after biopsy which adjusted accord-
ing to their specific conditions. The follow-up period was 
defined as the time from renal biopsy to the last follow-
up visit (by October 30, 2021). Prognostic analyses were 
conducted among these patients with follow-up peri-
ods ≥ 1 month and baseline eGFR ≥ 30  ml/min/1.73  m2. 
We collected the serial measurements of serum creati-
nine and proteinuria from each visit after biopsy until the 
event of ESRD or the last follow-up. The slope of eGFR 
calculated by the principal of least squares using linear 
regression was used to reveal the rate of renal function 
decline per year after biopsy. We used time-average pro-
teinuria (TA-P) to reflect the average proteinuria level 
after biopsy, which was defined as the ratio of the area 
under the curve of serial proteinuria measurements to 
the follow-up period [23]. The event of ESRD was defined 
as eGFR < 15  mL/min/1.73  m2 or initiation of dialysis 
over 3  months, or renal transplantation. Spearman cor-
relation was performed to estimate the associations of 
CNN-based classes or pathologist-based classes with 
baseline clinical indicators and long-term renal function.

Statistical analyses
Continuous variables were presented as median (inter-
quartile range: IQR), and inter-group comparisons were 
performed by Mann Whitney U test or Kruskal–Wallis 
H test as appropriate. Categorical variables were pre-
sented as numbers (percentages). The r coefficients were 
compared for significance using the Z-score method [24, 
25]. The data were analyzed using SPSS version 25.0 and 

plotted in GraphPad Prim 8. Two-sided P values were 
reported, and P < 0.05 was statistically significant.

Results
Patients’ characteristics
A total of 631 patients with biopsy-proven DN were 
enrolled. The enrolled patients were allocated to different 
subsets for different tasks. The internal application sub-
set was from cases involving in glomeruli types model or 
mesangial area model, and additional cases (not involved 
in any model training) were used as the external applica-
tion subset. The detailed clinical characteristics of differ-
ent subsets are described in Additional file 1: Table S1.

Identifying glomerular morphological features
Glomeruli types and mesangial area
A confusion matrix displayed the prediction of glomer-
uli types by our CNN model relative to the ground truth 
by pathologists (Additional file  1: Table  S2). Our CNN 
model achieved excellent performance in identifying 
KW and GS glomeruli, with F1-scores of 0.953 and 0.928, 
respectively (Table 1). Next, we developed another CNN 
algorithm for segmenting the  mesangial region in these 
two types of glomerulus. The average dice for segmenting 
mesangial area was 0.870, and the dice for NOA and KW 
glomeruli were 0.864 and 0.884, respectively.

Glomerular intrinsic cells
In view of the good performance of our previous ARPS 
for the recognition of glomerular intrinsic cells in IgA 
patients, we firstly verified the performance of the 
ARPS system on identifying glomerular intrinsic cells 
in DN patients, a total of 13,072 intraglomerular cells 
originating from 50 NOA glomeruli and 50 KW glo-
meruli were selected. The confusion matrix of intrin-
sic cells is described in Additional file  1: Table  S3. This 
model achieved F1-scores beyond 0.839 in predicting 
three intrinsic cells in DN patients, obtaining the high-
est F1-score in predicting mesangial cells, followed by 
endothelial cells and podocytes (Table  2). Figure  2 pre-
sents the results of segmenting mesangial area and pre-
dicting three intrinsic cells by our CNN models.

Table 1 Performance of our CNN model on identifying different glomeruli types

Glomeruli types Accuracy Specificity Precision Recall F1‑score

Global glomerulosclerosis 0.984 0.985 0.881 0.981 0.928

Segmental glomerulosclerosis 0.956 0.982 0.692 0.595 0.640

Kimmelstiel–Wilson lesions 0.988 0.997 0.979 0.929 0.953

None of the above 0.947 0.944 0.914 0.952 0.933
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Characterizing glomerular morphological features
Then our CNN architecture was used to quantify these 
features in a large sample of DN patients. Of 340 cases, 
21,180 glomeruli were identified by our CNN model in 
which the predicted percentages of different glomeruli 

types were 31.7% (GS), 3.9% (SS), 0.6% (C), 15.5% (KW), 
and 48.2% (NOA), respectively. 11,188 KW and NOA 
glomeruli in the midsection (total glomerular cells ≥ 50) 
were picked out for further intraglomerular features 
analysis. For patients’ level, as the pathologic classes 
increased, mesangial cell numbers, mesangial area, 
mesangial area fraction, and mesangial area/mesan-
gial cell ratio increased significantly; podocyte numbers 
decreased significantly; while endothelial cell numbers 
remained relatively stable (Additional file  1: Table  S4). 
In addition, we also calculated the changes in intrinsic 
cells relative to the glomerular area (termed cell density). 
It showed similar change trends to the above absolute 
results (Additional file  1: Table  S5). For the glomerular 
level, we compared the intraglomerular morphometrics 

Table 2 Performance of the V-Net architecture from the ARPS 
system on identifying three glomerular intrinsic cells in patients 
with DN

Intrinsic cells Accuracy Specificity Precision Recall F1‑score

Mesangial cells 0.942 0.953 0.932 0.926 0.929

Endothelial cells 0.930 0.970 0.939 0.855 0.895

Podocytes 0.961 0.986 0.890 0.793 0.839

Fig. 2 Our CNN architectures identify intraglomerular features. Original images derived directly from WSI slides (A NOA glomerulus, B KW 
glomerulus). Prediction images (C, D) describe the predicted results of intraglomerular features from the original images (cyan: Bowman capsules, 
red: podocytes, blue: mesangial cells, green: endothelial cells, yellow: mesangial regions). Scale bar: 50 μm



Page 6 of 10Lei et al. Journal of Translational Medicine          (2024) 22:397 

between NOA and KW glomeruli. KW glomeruli showed 
significantly increased glomerular area, mesangial area, 
mesangial cell numbers, mesangial area/mesangial cell 
ratio, and endothelial cell numbers, but severe podocytes 
depletion compared to NOA glomeruli (Fig. 3). In addi-
tion, KW glomeruli also showed a significantly increased 
ratio of mesangial cells and endothelial cells, while 
decreased podocyte ratio compared to NOA glomeruli 
(Additional file 1: Table S6).

Except for most patients presenting strong correla-
tions of glomerular feature levels with their pathologic 
classes, we also observed a small subset of DN patients 
who fulfilled the criteria of class III or class IV but pre-
sented with relatively mild mesangial expansion. If we 
defined the value of mesangial area fraction < 95% of that 

in ≤ class IIa as mild mesangial expansion (mesangial area 
fraction < 0.2596). A total of 24 (9.7%) cases in class III or 
class IV have mild mesangial expansion (Fig. 4). It indi-
cated that the severity of a lesion in one glomerulus could 
be not always parallel to that in another within the same 
patient.

CNN‑identified glomerular morphological features 
determine pathologic classification
Evaluating the effect of individual intraglomerular 
morphometric on predicting early pathologic classes
The early pathological stage (from class I to class IIb) is 
divided by the width of the mesangial region according 
to the RPS classification system. Here, ROC curves were 
conducted to evaluate the effect of each morphometric 

Fig. 3 Violin plots depict the distribution of each intraglomerular feature between NOA and KW glomeruli from a pooled 11,188 midsection 
glomerular image (NOA: 8181, KW: 3007). M: mesangial, E: endothelial, P: podocytes. The purple line: the median value, the orange line: 
the interquartile range. Inter-group comparisons were performed by Mann Whitney U test



Page 7 of 10Lei et al. Journal of Translational Medicine          (2024) 22:397  

on distinguishing between early pathologic classes using 
the internal subset. It showed that all significant features 
were involved in mesangium (Additional file 1: Table S7). 
The top three features comprised average mesangial area, 
mesangial area fraction, and mesangial area/mesangial 
cell ratio, with the AUCs beyond 0.809. The optimal cut-
off values of these mesangium-related indices were used 
to classify patients from class I to class IIb respectively.

CNN‑based versus pathologist‑based classifications
After the glomerular features in WSIs were quanti-
fied by our CNN algorithms, the percent GS > 50% and 

the presence of KW lesions were used to screen out 
patients in class IV and class III, respectively. Then, the 
optimal cutoff values from the top three mesangium-
related features were used to distinguish between early 
classes respectively. As shown in Table 3, model 3 (com-
bined with mesangial area fraction) obtained the high-
est Cohen’s kappa value with pathologists on predicting 
pathologic classes in the internal subset. It reached 
0.624 (CNN-pathologist pair ranged from 0.529 to 
0.688), achieving moderate agreement. In the exter-
nal subset, model 1 (combined with average mesan-
gial area) obtained the highest Cohen’s kappa of 0.663 

Fig. 4 Intraglomerular lesions within one patient are not parallel to each other. The common presentation showed that a patient in class III had 
Kimmelstiel–Wilson (KW) lesions (A) accompanied by severe mesangial expansion (B). While in uncommon presentation, a patient in class III 
had a KW lesion (C) accompanied by mild mesangial expansion (D). Cyan: Bowman capsule; red: podocytes (P); blue: mesangial cells (M); green: 
endothelial cells (E); yellow: mesangial area; asterisk, KW lesions.  Mf: mesangial area fraction. Scale bar: 50 μm
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(CNN-pathologist pair from 0.655 to 0.699). Additional 
file 1: Fig. S1 describes the detailed procedure to classify 
glomerular lesions in DN patients. We also assessed the 
Cohen’s kappa values between three experienced pathol-
ogists in 65 cases, which are 0.773 (pathologist 1-pathol-
ogist 2), 0.797 (pathologist 1-pathologist 3), and 0.754 
(pathologist 2-pathologist 3), respectively.

CNN‑based classification achieved equivalent performance 
to pathologist‑based classification in predicting renal 
function
The trajectories of kidney function among our population 
were evaluated. Of 250 patients having follow-up infor-
mation, 49 cases (19.6%) entered ESRD. A total of 3126 
measures of eGFR (from 250 cases) and 1532 measures 
of proteinuria (from 248 cases), including the baseline 
measures, were collected. The average follow-up period 
was 2.58  years for eGFR and 2.52  years for proteinu-
ria. The average times of measurements in one patient 
were 11.9 for eGFR and 5.9 for proteinuria. The median 
(IQR) eGFR slope of different classes by pathologists was 
− 1.89 (− 3.26, 0.71) mL/min/1.73  m2/year (class I), − 1.65 
(− 7.60, 1.23) mL/min/1.73  m2/year (class IIa), − 3.34 

(− 7.05, − 3.33) mL/min/1.73  m2/year (class IIb), − 11.60 
(− 21.46, − 4.61) mL/min/1.73  m2/year (class III), and 
− 13.75 (− 22.73, − 7.58) mL/min/1.73  m2/year (class IV), 
respectively. The median (IQR) TA-P levels of different 
classes were 0.73 (0.48, 1.05) g/24 h (class I), 1.41 (0.71, 
2.18) g/24 h (class IIa), 1.60 (0.66, 3.26) g/24 h (class IIb), 
3.92 (2.28, 6.51) g/24  h (class III), and 5.08 (2.73, 7.69) 
g/24 h (class IV), respectively.

Firstly, we analyzed the CNN-based classes derived 
from model 1 (combined with the average mesangial 
area) in the internal subset. It was associated signifi-
cantly with the baseline proteinuria and eGFR level, TA-P 
level, and eGFR slope after biopsy, as well as the event of 
ESRD. The Spearman r values of the classes from model 
1 with these clinical prognostic indicators were com-
parable to that of pathologist-based classes with these 
indicators using the Z-scores method (Table  4). It was 
consistent with the results in the external subset (Addi-
tional file 1: Table S8). Model 2 (combining with mesan-
gial area/mesangial cell ratio) and model 3 (combining 
with mesangial area fraction) also showed similar results 
(Additional file 1: Tables S9–S12). The above results indi-
cated that CNN-based classifications performed equally 

Table 3 The consistency between the CNN-based and pathologist-based pathologic classes

Model 1 was the CNN-based classification derived from combination of percent GS, the presence of KW lesions with the optimal cutoff values of average mesangial 
area; Model 2 derived from combination of percent GS, the presence of KW lesions with the optimal cutoff values of mesangial area/mesangial cell ratio; Model 3 
derived from combination of percent GS, the presence of KW lesions with the optimal cutoff values of mesangial area fraction

Cohen’s kappa value CNN‑based classes

Internal application subset External application subset

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Pathologist 1 0.475 0.457 0.529 0.667 0.585 0.640

Pathologist 2 0.688 0.722 0.688 0.655 0.588 0.423

Pathologist 3 0.653 0.655 0.654 0.699 0.618 0.741

Total 0.604 0.587 0.624 0.663 0.592 0.602

Table 4 Spearman correlation of clinical prognostic indicators with CNN-based or pathologists-based classes in the internal 
application subset

CNN-based classes derived from Model 1 (combined with average mesangial area). The Z-score method was used to test the difference between the r coefficients 
from pathologists-based classes and those from CNN-based classes. The Spearman r coefficient of CNN-based classes with pathologists-based classes was 0.718. The 
results of the Z-score method were given from hittner2003

Indicators Proteinuria eGFR

Proteinuria at 
biopsy, g/24h
(n = 226)

Time‑average 
proteinuria, g/24h
(n = 157)

eGFR at biopsy, ml/
min/1.73  m2

(n = 226)

eGFR slope, ml/
min/1.73  m2/year
(n = 157)

Event of ESRD
(n = 157)

Spearman correlation (r, P value) r P value r P value r P value r P value r P value

Pathologists-based classes 0.327 < 0.001 0.447  < 0.001 − 0.443 < 0.001 − 0.363 < 0.001 0.250 0.002

CNN-based classes 0.368 < 0.001 0.384  < 0.001 − 0.371 < 0.001 − 0.318 < 0.001 0.229 0.004

Z‑scores (Z, P value) Z P value Z P value Z P value Z P value Z P value

CNN vs pathologists − 0.878 0.380 1.162 0.245 − 1.591 0.112 0.798 0.425 0.359 0.720
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to pathologist-based classifications on predicting base-
line and long-term renal function.

Discussion
Glomerular lesions were proved to best reflect the natural 
course of progressive DN and were used for pathologic 
classification [4, 26, 27]. In this study, we constructed a 
CNN-based method to automatically characterize glo-
merular morphological features from the specimen 
sections in a large sample of DN patients. Several intra-
glomerular features showed strong correlations with the 
pathologic classes, including mesangial area, numbers 
of mesangial cells, and podocytes. Furthermore, the per-
formance of CNN-based classification was equivalent 
to that of pathologist-based classification in predicting 
baseline renal function and prognosis. It remained robust 
in the external dataset.

The glomerular lesion develops as a continuous mor-
phologic spectrum. Quantification of glomerular lesions 
is of great significance for pathologic classification and 
prognosis evaluation in DN patients. In clinical practice, 
quantifications of intraglomerular features are unscal-
able and impractical for pathologists in routine pathol-
ogy workflow [13]. Our study developed a CNN method 
to identify glomeruli types, segment mesangial area, as 
well as recognize and count three intrinsic cells automati-
cally and accurately just based on routine PAS-stained 
slides. To our knowledge, this is the first time to simulta-
neously identify these key morphological features using 
CNN algorithms among patients with DN. As the path-
ologic classes increased, the number of mesangial cells 
and mesangial area increased significantly, endothelial 
cell number remained stable; while podocyte number 
decreased gradually. The current pathologic classification 
system assigns diverse patients into several given catego-
ries based on partial injury characteristics. It reduced the 
ability to capture the heterogeneity of histologic lesions. 
Notably, through using our CNN models, we observed 
an uncommon pathological presentation that patients in 
class III and class IV could have mild mesangial expan-
sion in a proportion of glomeruli, indicating heterogene-
ous glomerular lesions among patients even within the 
same pathologic class.

The pathologic classification proposed by RPS [4] was 
verified to be significantly associated with renal out-
comes in DN patients [10]. However, this classification 
system was a manual assessment and labor-intensive. In 
this study, mesangial area-related features were found 
to obtain superior performance than other features in 
distinguishing patients in early classes. It was consist-
ent with the visual estimation based on mesangial width 
by pathologists [4]. The combination of these superior 
mesangial features with percent GS and KW lesions was 

further used for pathologic classification, achieving mod-
erate agreement with pathologists-based classes. The 
external subset showed similar agreement, indicating the 
strong robustness and generalization ability of our CNN 
models in pathological classification.

Pathologic classification was also used to reveal the 
prognosis of patients. Our CNN-based classification 
achieved identical performance to pathologists-based 
classification for predicting the baseline and long-term 
renal function (including proteinuria and eGFR), though 
only achieving moderate agreement with pathologists. 
Additionally, in the external subset, CNN-based classes 
had a slightly higher correlation coefficient (although 
not statistically) with renal function indices compared to 
pathologists-based classes. It may be due to the relatively 
mild lesions in the external subset.

However, this study also has certain limitations. Firstly, 
we only measured intraglomerular morphological fea-
tures in a substantial proportion of glomeruli such as KW 
lesions or none of the above lesions. The changes in intra-
glomerular morphometrics in a small subset of glomer-
uli with segment glomerulosclerosis are still unknown. 
Secondly, although we tried our best to diminish the 
bias from the glomerular area and non-midsections, the 
quantifications of glomerular features in this study need 
to be further verified by other morphological methods. 
Importantly, this is a single-center study, lacking external 
validation in other centers. We are planning to evaluate 
the effectiveness of our CNN models in other centers.

The CNN algorithms can be trained to automatically 
quantify the glomerular and intraglomerular morpho-
logical features on whole-slide images just using rou-
tine-stained slides from patients with DN. Furthermore, 
the quantified glomerular features derived from the 
well-trained CNN model hold large potential to assist 
pathologic classification and prognosis evaluation in clin-
ical practice, hence enhancing precision medicine in DN 
patients.
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