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Background
Successful sexual reproduction requires the recognition 
and fusion of sperm and oocytes, which leads to the con-
ception of new embryos. To produce healthy and func-
tional gametes, the embryo must develop healthy gonads, 
which are populated by germ cells that differentiate at the 
onset of puberty. Molecular genetic studies have shown 
that thousands of genes play a role in regulating and pre-
serving human reproduction. When one of the repro-
ductive processes fails, the individual becomes unable to 
conceive. Infertility is defined as the inability to conceive 
after 6–12 months of unprotected sexual intercourse and 
affects 16.5–17.8% of couples globally [1].
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Abstract
The study of the functional genome in mice and humans has been instrumental for describing the conserved 
molecular mechanisms regulating human reproductive biology, and for defining the etiologies of monogenic 
fertility disorders. Infertility is a reproductive disorder that includes various conditions affecting a couple’s ability 
to achieve a healthy pregnancy. Recent advances in next-generation sequencing and CRISPR/Cas-mediated 
genome editing technologies have facilitated the identification and characterization of genes and mechanisms 
that, if affected, lead to infertility. We report established genes that regulate conserved functions in fundamental 
reproductive processes (e.g., sex determination, gametogenesis, and fertilization). We only cover genes the deletion 
of which yields comparable fertility phenotypes in both rodents and humans. In the case of newly-discovered 
genes, we report the studies demonstrating shared cellular and fertility phenotypes resulting from loss-of-function 
mutations in both species. Finally, we introduce new model systems for the study of human reproductive biology 
and highlight the importance of studying human consanguineous populations to discover novel monogenic 
causes of infertility. The rapid and continuous screening and identification of putative genetic defects coupled with 
an efficient functional characterization in animal models can reveal novel mechanisms of gene function in human 
reproductive tissues.
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Since the inception of human in vitro fertilization (IVF) 
[2], intracytoplasmic sperm injection (ICSI) [3], and the 
achievement of the first IVF pregnancies [4], extensive 
research has focused on optimizing in vitro insemina-
tion and embryo culture conditions in order to improve 
IVF outcomes. In addition, next-generation sequencing 
(NGS) technologies have also been adopted to decipher 
the causes of fertility phenotypes for faster and more 
precise diagnostics and treatments. Typical monogenic 
fertility disorders affect sperm number, motility, or 
morphology [5] and may lead to primary ovarian insuf-
ficiency (POI), abnormal zygote cleavage, and embryo 
development arrest [6]. These phenotypes are caused by 
loss-of-function variants affecting genes regulating mam-
malian reproduction [5, 6].

We searched PubMed and the Online Mendelian 
Inheritance in Man (OMIM) for established and newly 
identified genes that regulate conserved functions in fun-
damental mammalian reproductive processes (e.g., sex 
determination, gametogenesis, fertilization, and early 
embryo development). Of note, we included only genes 
for which studies on genome-edited rodents demon-
strated conserved functions and comparable fertility phe-
notypes upon homozygous (or compound heterozygous) 
loss of function mutations (i.e., mutations leading to lack 
of protein expression) in humans [7–9]. For the estab-
lished genes (genes with a well-documented conserved 
role in mouse and human), here we briefly describe their 
conserved role in mouse and human reproductive biology 
and reference only studies reporting the human fertility 
phenotypes. For the most recently identified genes, we 
describe shared cellular and fertility phenotypes resulting 
from loss-of-function mutations in both species.

We do not cover associative studies on genes for which 
no animal models have been generated. We do not 
include genes for which a null-mutant animal model has 
been generated, but no clear loss of function mutations 
has been found in humans (e.g., a homozygous putative 
deleterious missense variant without functional valida-
tion, or a heterozygous frameshift variant would not 
be considered as clear loss of function mutations). In 
addition, we do not include fertility phenotypes due to 
chromosomal structural aberrations, abnormal sex chro-
mosome numbers (e.g., Y chromosome microdeletions, 
Klinefelter, XXY- XXXXY males), or genetic systemic 
disorders associated with infertility such as the Kartagen-
er’s, fragile X, Noonan syndromes, myotonic dystrophy, 
sickle cell anaemia, and β-thalassemia.

Genetic control of sex determination
Human sex determination occurs early in embryogenesis, 
and the embryo develops bipotential gonadal primordia, 
which through genetic regulation, can differentiate as 
either testes or ovaries [10]. Six weeks post-conception, 

the sex-determining region Y (SRY) gene activates Sry-
related HMG box gene-9 (SOX9), which induces the 
expression of the Anti-Müllerian duct hormone (AMH), 
thus actively controlling testis development, Sertoli cell 
differentiation, and the general maleness of XY individu-
als [11]. Secreted by the Sertoli cells, AMH induces the 
degeneration of the Müllerian duct [12]. Sox9 also acti-
vates fibroblast growth factor-9 (FGF9), which represses 
the WNT4 expression and the ovarian development [10]. 
In addition, SRY works in concert with the steroidogenic 
factor-1 (encoded by the Nuclear Receptor NR5A1) to 
maintain Sox9 expression [13].

Conversely, the Nuclear Receptor Subfamily 0 Group B 
Member-1 (NR0B1 or DAX1), antagonizes the function 
of SRY [14] while downregulating NR5A1 expression [15] 
(Fig. 1). DNA variants affecting SRY and SOX9 [16] leads 
to sex reversal in humans, and, on the other end, XX 
individuals carrying extra copies of either SRY or SOX9 
develop as males [16]. Similarly, mutations in human 
NR5A1 frequently lead to 46 XY disorders of sex develop-
ment [17]. Consistent with its function, duplication of the 
X region containing NR0B1 is associated with male-to-
female sex reversal in XY individuals, and loss-of-func-
tion mutations in NR0B1 are responsible for X-linked 
adrenal hypoplasia congenita, a disorder characterized 
by hypogonadotropic hypogonadism (Fig. 1) [18]. When 
gene expression favors the pro-ovarian Rspo1/Wnt4–β-
catenin signaling pathway over Fgf9, a different set of 
genes takes over to regulate female sex determination 
(Fig. 1).

The Wingless-Type MMTV Integration Site Family, 
Member-4 (WNT4), is expressed in the genital ridge 
while still in its bipotential stage [11] and becomes unde-
tectable in XY gonads. In contrast, it is maintained in 
XX as their gonads differentiate into ovaries. WNT4 
expression is regulated by RSpondin-1 (RSPO1), a 
secreted activator protein that upregulates the canoni-
cal WNT/β-catenin signaling pathway to promote ovar-
ian development while antagonizing testis formation. In 
humans, mutations in WNT4 lead to 46 XX virilization, 
primary amenorrhea, uterine hypoplasia, and follicle 
depletion [19]. Similarly, XX individuals lacking RSPO1 
show female-to-male sex reversal, and XY individuals 
with a duplicated Chromosome 1 region encompassing 
RSPO1 and WNT4 present male-to-female sex reversal 
[20]. These mechanisms are conserved across evolution, 
and gene deletion in transgenic mice leads to comparable 
sex reversal phenotypes and infertility. Of note, recent 
studies have shown that the elimination of the Wolff-
ian ducts is an active process regulated by the Nuclear 
Receptor Subfamily-2-Group-F-Member-2 (NR2F2). 
This ligand-inducible transcription factor suppresses the 
mesenchyme-epithelium crosstalk, which is necessary to 
conserve the Wolffian ducts [21]. Gene deletion in mice 
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leads to intersex individuals presenting female and male 
reproductive tracts [21]. In humans, loss-of-function 
mutations affecting NR2F2 lead to testis [22] or ovotestis 
development [23] in XX individuals (Fig. 1).

Sex reversal can also manifest upon hormonal imbal-
ance during embryo development. Mutations in AMH or 
its receptor AMHR2 induce Persistent Müllerian Duct 
Syndrome and internal hermaphroditism [24–28]. In 
addition, deleterious variants in genes regulating hor-
monal biosynthesis are typically associated with sex-
determination phenotypes. For example, deficiency in 
the enzymes regulating cortisol biosynthesis, such as 
Cytochrome P450 Family-11-Subfamily-B-Member-1 
(CYP11B1) lead to congenital adrenal hyperplasia [29, 
30]. Also, the Hydroxysteroid 17-beta Dehydrogenase-3 
(HSD17B3) code for enzymes responsible for the bio-
genesis of testosterone and dihydrotestosterone. Lack 
of HSD17B3 leads to pseudohermaphroditism in 46 XY 
individuals, impaired maturation of Leydig cells, and 
under-masculinization in men and mice [31]. Similar 
fertility phenotypes are observed when Amh, Ahmr2, 
Cyp11b1, are deleted in transgenic mice.

While bipotent gonads commit to becoming ovaries 
or testes, gonadal somatic cells support the development 
of sex-specific germ cell lineages, precursors of eggs and 
sperm.

Genes regulating germ cell physiology and meiosis in men
Over the past decade, advanced next-generation 
sequencing has unveiled the causes of numerous cases 
of male-factor infertility. Simultaneously, the generation 
of genome-edited mouse lines has shed light on the con-
served functions of key mammalian genes, preserving 
male fertility in both mice and humans. Normal game-
togenesis in mammalian males originates during early 
embryonic development from isomorphic primordial 
germ cells (PGCs) [32]. At this stage, the FA Complemen-
tation Group M (FANCM) gene is necessary to preserve 
genomic stability by regulating mammalian DNA rep-
lication and repair [33]. Deleterious variants in human 
FANCM lead to oligoasthenozoospermia [34] or Sertoli 
Cell-Only Syndrome, where only Sertoli cells outline the 
seminiferous tubules, with no sperm detectable [35], and 
Fancm-null male mice show reduced proliferation and 
loss of PGCs [36].

Male PGCs proliferate and migrate into the develop-
ing testis, where they will differentiate postnatally, into 
spermatogonia stem cells (SSCs) [37]. SSCs are unipo-
tent cells that complement self-renewing with differ-
entiating divisions to preserve the stem cell pool while 
maintaining adequate sperm production throughout the 
male reproductive lifespan [38]. Factors maintaining a 
balance between proliferating and differentiating SSCs 
help prevent the premature depletion of the SSC pool, 

Fig. 1 Genetics of human sex determination. Genes that mediate the differentiation of bipotent gonad or reproductive ducts and that are associated 
with comparable sex developmental disorders in mice and humans (OMIM gene ID).
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while regulating controlled differentiation [38]. Human 
Nanos C2hc-Type Zinc Finger-2 (NANOS2) is neces-
sary to prevent XY germ cells from prematurely entering 
meiosis, and one homozygous deleterious mutation has 
been found to segregate with Sertoli cell-only syndrome 
in humans [8]. Nanos2 role is conserved in mammals: 
Nanos2 deletion by Cas9 genome-editing in mice, pigs, 
goats, and cattle leads to germline-depleted testes and 
male infertility [39]. While Nanos2 prevents differentia-
tion, the TATA-box Binding Protein Associated Factor-
4b (TAF4B) controls the expression of genes promoting 
differentiation and self-renewal of SSCs, and TAF4B dele-
tion results in nonobstructive azoospermia (NOA) or oli-
gozoospermia in mice and men (Fig. 2) [40].

Spermatogonia undergo premeiotic DNA replication, 
differentiate into primary spermatocytes, and eventually 
enter prophase I of meiosis. The alignment and synapsis 
of the homologous chromosomes and genetic recombi-
nation occur during prophase I of meiosis. Meanwhile, 
the duplication of centrioles, the formation of DNA dou-
ble-strand breaks (DSBs)(leptotene stage), the assembly 
and maintenance of the synaptonemal complex (zygotene 
stage), and the formation of crossing overs (pachytene 
stage) ensure the formation of genetically intact and fer-
tile sperm (Fig.  2). The Polo-Like Kinase-4 (PLK4) con-
trols centriole duplication, which is necessary for primary 
spermatocytes to undergo meiosis. One patient, carrier 
of a heterozygous deletion in the Ser/Thr kinase domain 
of PLK4, presented with infertility due to Sertoli cell-only 
syndrome, similar to mice heterozygous for a Plk4 -null 
mutation [41].

The synaptonemal complex ensures the association 
between homologous chromosomes, while the cohesin 
complex mediates sister chromatid cohesion, and the 
telomeres adhere to and move on the nuclear envelope 
to regulate chromosome mobility and homologous pair-
ing. Meiotic double-stranded break formation protein-1 
(MEI1), Meiosis Specific with Ob-Fold (MEIOB), Testis 
Expressed-11 (TEX11), 14 (TEX14) and 15 (TEX15), help 
to induce the formation of DSBs, while contributing to 
the assembly of the synaptonemal complex and genera-
tion of crossovers between homologous chromosomes. 
Spermatocyte arrest is observed upon gene deletion of 
human MEI1 [42] or TEX11 [43–45], and in men carry-
ing homozygous loss-of-function mutations in MEIOB 
[46–49]. In addition, depletion of TEX14 leads to Sertoli 
cell-only syndrome [8, 50], whereas deleterious variants 
in TEX15 lead to NOA and crypto/oligozoospermia [45]. 
In addition, Minichromosome Maintenance Domain-
Containing Protein-2 (MCMDC2) and Ring-Finger Pro-
tein-212 (RNF212) are necessary for the formation and 
maintenance of the synaptonemal complex and resolu-
tion of DSBs [8, 51, 52]. Moreover, three factors assem-
ble in a complex that promotes telomere adhesion to 

the nuclear envelope, namely Telomere Repeat-Binding 
Bouquet Formation Protein-1 and − 2 (TERB1, TERB2), 
Membrane-Anchored Junction Protein (MAJIN) [52], 
and SAD1-and-UNC84-Domain-Containing-1 (SUN1) 
[53]. The TERB1-TERB2-MAJIN complex is necessary 
for mouse and human meiosis [54], and its disruption 
leads to NOA in men [52].

Screening more NOA patient genomes has confirmed 
the role of several other factors (that were already estab-
lished as necessary for male meiosis in mice) in regulat-
ing human meiosis. Genes coding for meiosis-specific 
recombinases (DNA Meiotic Recombinase-1, DMC1) 
[55], proteins repairing DNA inter-strand crosslink and 
DSBs (FANCA) [56], transcription or post-transcrip-
tional regulation such as Tudor-Domain Containing Pro-
tein-7 (TDRD7) [57] and Zinc Finger Mynd-Containing 
Protein-15 (ZMYND15) [40], protein kinases such as 
Serine Protease Inhibitor-Kazal-Type-2 (SPINK2) [58], 
or genes controlling meiotic progression (Meiosis-1-As-
sociated-Protein, M1AP) [59] are necessary regulators of 
male meiosis in men and mice (Fig. 2).

Moreover, during male meiosis, the P-element–induced 
wimpy testis (PIWI)-interacting RNAs (piRNAs) (which 
are expressed in the pachytene spermatocytes) interact 
with PIWI proteins [60–62] (PIWIL1, or MIWI, PIWIL2, 
or MILI, and PIWIL4, or MIWI2) to preserve the germ-
line genome against the mobilization of transposable 
elements [63]. The Hen Methyltransferase-1 (HENMT1) 
controls the 2’ O-methylation of piRNAs. HENMT1 
deficiency results in piRNA instability and NOA [64]. In 
addition, adult meiotic and haploid germ cells undergo 
TE de-repression, resulting in the premature expression 
of haploid transcripts, increased DNA damage, and sper-
miogenesis arrest [65]. The Poly(A)-Specific RNAse-Like 
Domain Containing-1 (PNLDC1) regulates the process-
ing of piRNAs by trimming the 3′ ends [66, 67]. Pnldc1 
deletion in men and mice affected the expression of 
piRNA-processing proteins (e.g., PIWIL1, PIWIL4) and 
pachytene piRNAs in the testes, leading to NOA [66–68]. 
TDRD9 silences Line-1 (L1) retrotransposons in the male 
germ line [69], and loss of TDRD9 leads to cryptozoo-
spermia or azoospermia [69].

Genetic control of female gametogenesis
DNA replication and recombination of oocyte meiosis 
occur in the fetal ovary, and the maturing oocytes arrest 
at the dictyate (diplotene) stage. At this stage, homolo-
gous chromosomes are held together in a bivalent con-
figuration through crossover recombination between 
homologous chromosomes and cohesion between sister 
chromatids. In humans, such a configuration is main-
tained for decades until ovulation. At the resumption 
of oocyte meiosis, the completion of meiosis I coin-
cides with the spindle formation, and the segregation 



Page 5 of 14Fakhro et al. Journal of Translational Medicine          (2024) 22:473 

of homologous chromosomes depends on the correct 
assembly of the spindle [70]. Tubulin-Beta-8 (TUBB8) is 
a necessary component of the mouse and human oocyte 
spindles. TUBB8 DNA variants acting as dominant-nega-
tive led to infertility due to defective oocyte maturation, 
and an abnormal or completely-absent spindle [70, 71].

Spindle pole instability is another major cause of 
human fertility disorders, as it may lead to aneuploidy. 

Humans, bovine and porcine oocytes are depleted of 
acentriolar microtubule-organizing centers (aMTOCs), 
and the Nuclear Mitotic Apparatus Protein (NUMA)-
mediated clustering of microtubule minus ends focuses 
the spindle poles [72]. In mice, the aMTOC-free oocytes 
present stable spindles owing to a spindle-stabilizing pro-
tein, the KINESIN Superfamily Protein-C1 (KIFC1), con-
stitutively absent in human oocytes [72]. Kifc1 deletion in 

Fig. 3 Genetics of oogenesis and follicular development. Top, genes regulating different stages of meiosis I and II, or phases at meiosis I (gene OMIM ID). 
Deletions of these genes present a comparable fertility phenotype in mice and humans. Bottom, stages of folliculogenesis at pre- or post-birth and genes 
regulating oocyte maturation (OMIM gene ID). Deletions of these genes present a comparable female (or female and male, for genes regulating meiosis) 
fertility phenotype in mice and humans (reported in OMIM or by case reports)

 

Fig. 2 Genes regulating meiosis and spermiogenesis during spermatogenesis. Top, genes regulating different phases of Prophase I at meiosis or sper-
miogenesis stages (OMIM gene ID). Deletions of any of these genes present a comparable fertility phenotype in mice and humans (reported in OMIM or 
by case reports). Bottom, cellular differentiation stages of spermatogenesis
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mice leads to spindle instability, while exogenous KIFC1 
injected in human oocytes rescues spindle instability 
[72].

At meiosis I, homologous recombination mediates 
accurate segregation of homologous chromosomes. 
DMC1 regulates meiotic recombination by promot-
ing homologous chromosome pairing and DNA strand 
transfer from nicked dsDNA to homologous ssDNA. 
Dmc1-null mice show aberrant oogenesis during fetal 
development and adult ovaries devoid of germ cells [55]. 
Similarly, in humans, homozygous deleterious mutation 
in DMC1 presented with primary infertility due to POI 
[55]. Psmc3-Interacting Protein (PSMC3IP) is another 
factor that facilitates meiotic recombination to promote 
DNA strand exchange at meiosis. Homozygous deleteri-
ous mutations in PSMC3IP have been shown to segre-
gated with POI [73]. Similarly to humans, Psmc3ip null 
female mice present ovaries deprived of follicles and are 
infertile [73].

DNA repair by homologous recombination is a nec-
essary step for the development of fertile oocytes. The 
repair of DNA double-strand breaks and stalled DNA 
replication forks during meiosis is mediated by two com-
ponents of the mini-chromosome maintenance protein 
group, the Minichromosome Maintenance 8 Homolo-
gous Recombination Repair and Minichromosome Main-
tenance 9 Homologous Recombination Repair Factors 
(MCM8, MCM9). Several studies reported pathogenic 
variants in either MCM8 [74–77] or MCM9 [78, 79] 
segregating with POI. Comparably to humans, the dele-
tion of mouse Mcm8 or Mcm9 leads to infertility due to 
ovaries lacking mature follicles [80]. During homologous 
recombination, the REC114 Meiotic Recombination Pro-
tein (REC114) mediates the formation of DNA DSBs in 
unsynapsed regions, a necessary step for the comple-
tion of synapsis. Lack of Rec114 leads to NOA and POI 
in mice, due to defective DSB formation and aberrant 
homologous synapsis [81]; in women, REC114 gene dele-
tion leads to infertility due to supernumerary pronuclei 
formation at fertilization and early embryonic arrest [82].

Genes that cause defective gametogenesis in men and 
women
Several genes regulate shared molecular pathways during 
male and female gametogenesis. These pathways include 
the pairing and recombination of homologous chromo-
somes, DNA repair, formation of crossovers, synaptone-
mal or cohesin complexes, or regulate gene expression 
during gametogenesis, independently from meiosis. 
Loss-of-function mutations affecting these genes may 
often result in NOA in men and POI in women [55, 
73–80, 83–85]. Examples include MutS Homolog 4 and 
5 (MSH4, and MSH5), X-Ray Repair Cross-Comple-
menting-2 (XRCC2), Kash Domain-Containing Protein 

5 (KASH5), DNA-Binding Protein-Synaptonemal Com-
plex Protein-3 (SYCP3), Synaptonemal Complex Central 
Element Protein-1 (SYCE1), Thyroid Hormone Recep-
tor Interactor-13 (TRIP13), Stromal Antigen 3 (STAG3), 
Spermatogenesis And Oogenesis Specific Basic Helix-
Loop-Helix 1 and 2 (SOHLH1 and SOHLH2).

MSH4 mediates recombination and segregation of 
homologous chromosomes at meiosis in testes and 
ovaries, and gene deletion leads to POI [86] and NOA 
[87]. MSH5 regulates DNA mismatch repair and mei-
otic recombination, and deleterious variants also result 
in POI or NOA [88]. XRCC2 controls the homologous 
recombination DNA repair pathway during chromo-
somal fragmentation, translocations or deletions. While 
constitutional lack of Xrcc2 leads to almost complete fetal 
or perinatal lethality, mice carrying a deleterious variant 
in Xxrc2 present male infertility due to NOA and female 
infertility or severe female subfertility due to atrophic 
ovaries deprived of follicles [89]. Similarly, a deleteri-
ous variant in XRCC2 has been shown to cause POI and 
NOA in humans [90]. During recombination, Helicase 
For Meiosis 1 (HFM1) regulates formation of crossover 
and complete synapsis of homologous chromosomes and 
its deletion leads to POI and NOA in mice [91] and POI 
in humans [92]. KASH5 regulates pairing of homologous 
chromosomes [93], and gene deletion leads to POI and 
NOA [8, 94].

SYCP3 also regulates homologous chromosome pair-
ing and meiotic recombination. SYCP3 DNA variants 
are associated with recurrent pregnancy loss, and Sycp3 
deletion in mice leads to oocyte aneuploidy [95]. Synap-
tonemal Complex Central Element Protein 1 (SYCE1) 
also connects homologous chromosomes during mei-
otic prophase I, and it is necessary for crossover forma-
tion. SYCE1 interfaces with Chromosome-14-Orf-39 
(C14ORF39), a meiotic protein expressed in the cen-
tral element of the synaptonemal complex. Deletion of 
SYCE1 in two infertile sisters from a consanguineous 
family [96] or deleterious mutations in C14orf39 result 
in POI or NOA [51, 85, 96]. TRIP13 is a negative regu-
lator of crucial elements of the synaptonemal complex, 
namely the HORMA proteins, HORMAD1 and HOR-
MAD2 [97]. Deleterious missense mutations in TRIP13 
result in lower TRIP13 protein expression and to POI due 
to an aberrant intracellular accumulation of HORMAD2 
mRNA and protein, which had a dominant effect, leading 
to oocyte meiotic arrest [98]; similarly, deletion of Trip13 
in mice leads to POI or NOA [99].

Cohesin is a chromosome-associated multi-subunit 
protein complex that preserves cohesion between repli-
cated sister chromatids, and it is necessary for chromo-
some segregation and DNA repair. STAG3 is a subunit 
of the cohesin complex. Homozygous STAG3 missense 
pathogenic variants associated with POI and NOA and 
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Stag3-deficient mice show comparable phenotypes [83]. 
During gonad development, oocyte and spermatogonia 
differentiation are regulated by two transcription factors, 
SOHLH1 and 2. In males, Sohlh1 and 2 suppress genes 
that control SSCs maintenance and promote the expres-
sion of genes inducing spermatogonial differentiation. 
In females, they control oogenesis and folliculogenesis 
in the embryonic gonad. Both Sohlh1-null and Sohlh2-
null mutant female mice are infertile due to severe lack 
of follicles [100], and Sohlh1-null and Sohlh2-null mutant 
males present spermatogonia that precociously enter 
meiosis [101]. In humans, lack of SOHLH1 leads to ovar-
ian dysgenesis [102].

Spermiogenesis regulates the formation of fully 
differentiated sperm
Haploid spermatocytes undergo a series of key morpho-
logical changes, including acrosome biogenesis, DNA 
repackaging, head reshaping, and flagellum formation. 
These changes are orchestrated by several genes, whose 
mutations lead to fertility conditions related to sperm 
morphology and motility (e.g., globozoospermia, asthe-
nozoospermia, and asthenoteratozoospermia) [103].

During acrosome biogenesis, small Golgi-derived 
proacrosomic vesicles amass and merge into a single 
spherical acrosomic vesicle that connects to the nucleus 
[103]. Deleterious mutations in genes regulating acro-
some biogenesis, such as Spermatogenesis Associated-16 
(SPATA16), Dpy-19 Like-2 (DPY19L2), Zona Pellucida 
Binding Protein-1 (ZPBP1) and the Coiled-Coil Domain-
Containing-62 (CCDC62), typically lead to globozoosper-
mia, defined by sperm with a round-shaped head, and an 
atrophied, misplaced, or virtually absent acrosome, as 
shown by studies in consanguineous and non-consan-
guineous human populations [104–106]. Meanwhile, the 
sperm nucleus is efficiently compacted to facilitate the 
delivery of the paternal genome to the egg. Nucleopo-
rin − 210-Like (NUP210L) controls nuclear trafficking at 
spermiogenesis, and loss-of-function variants in human 
NUP210L in one infertile consanguineous man resulted 
in low sperm count, poor motility, and large-headed 
sperm presenting uncondensed nuclear DNA [107].

The structural reshaping of the spermatocyte head is 
regulated by a transient microtubular structure defined 
as the manchette, which mediates the condensation and 
elongation of the sperm head and the development of 
the flagellum [108]. During the manchette assembly, the 
IQ Motif-Containing-N (IQCN) regulates microtubule 
nucleation through calmodulin and calmodulin-related 
binding proteins [109]. The Hook Microtubule-Tethering 
Protein-1 (HOOK1) mediates the formation of the man-
chette and the intracellular transport of proteins [110]. 
Sperm Associated Antigen-17 (SPAG17) is a component 
of the sperm manchette and axoneme [111]. The ATP/

GTP Binding Protein 1 (AGTPBP1) regulates the poly-
glutamation of tubulin during spermiogenesis. AGT-
PBP1 is expressed in the mouse and human manchette, 
and its absence leads to teratozoospermia and infertility 
in mice and humans [112]. The Cilia And Flagella Asso-
ciated Protein-52 (CFAP52) codes for an inner microtu-
bule protein necessary for the ciliary or flagellar beating. 
CFAP52 works with CFAP45 and axonemal dynein sub-
unit DNAH11 and localizes to the spermatid manchette 
and the sperm tail. In addition, CFAP69 regulates head 
and flagellum development [113], whereas the Centro-
somal Protein 70 (CEP70) mediates flagellar formation 
and acrosome biogenesis [114, 115]. Deleterious variants 
affecting the manchette development lead to aberrant 
acrosomal morphology [109], decaudated heads or head-
less tails [110], severely reduced sperm motility [116], or 
asthenozoospermia [117].

The flagellum is another essential structural com-
ponent of mature sperm as it confers progressive and 
hyperactive motility, both necessary for fertilization. 
Numerous factors define the flagellum formation and 
elongation. The development and function of each of 
these factors are regulated by individual genes that, if 
deleted, lead to asthenozoospermia and multiple mor-
phological abnormalities of the flagella (MMAF; defined 
by short, coiled, irregular, or absent sperm tails). The cen-
trosomes are organelles that play a dual role, before and 
after fertilization. Before fertilization, centrosomes link 
the head and tail and regulate sperm flagellar beating; 
after fertilization, centrosomes mediate the formation 
of the zygote cytoskeleton [118]. The Centrosomal Pro-
tein-128 and 135 (CEP128; CEP135) mediate centriole 
biogenesis [119, 120]. The Intraflagellar transport (IFT) 
complex controls protein transport along the developing 
flagellum, and the Tetratricopeptide Repeat Domain-21a 
(TTC21A) [121] and − 29 (TTC29) are key regulators of 
the IFTs [122, 123]. The fibrous sheath (FS) provides the 
sperm with proper structure, flexibility, and regulation of 
motility through the activity of A-Kinase Anchoring Pro-
tein-3 and − 4 (AKAP3, AKAP4), and the Fibrous Sheath 
Interacting Protein-2 (FSIP2) [124, 125]. The axoneme of 
the flagellum is defined by a “9 + 2” structure consisting 
of a central pair of two singlet microtubules surrounded 
by nine doublet microtubules. It confers motility to the 
sperm through the Inner and Outer Dynein Arms (IDAs, 
ODAs) motor activity [126]. Sperm Flagellar Protein-2 
(SPEF2) is necessary to develop the axoneme [126, 127].

In addition, several axonemal dynein proteins, includ-
ing DNAH1, DNAH2, DNAH6, DNAH10, DNAH17, 
and DNALI1 [128–138], Cilia And Flagella Associated 
Proteins (CFAP43, CFAP44, CFAP47, CFAP54, CFAP57, 
CFAP65, CFAP70) are main constituents of the IDAs 
and ODAs and loss of function variants lead to defective 
spermiogenesis and male infertility [139–145]. Finally, 
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the radial spoke is a multiprotein complex (CFAP61, 
CFAP91, CFAP206, CFAP251) [146–149] serving as a 
mechanochemical transducer between the central and 
peripheral pair microtubule doublets while control-
ling flagellar beating. Also, during flagellar formation, 
the ubiquitin-proteasome pathway eliminates abnormal 
proteins, organelles, and sperm cells. Glutamine Rich-2 
(QRICH2) stabilizes the expression of proteins necessary 
for flagellar development by suppressing the ubiquitina-
tion-dependent degradation of these proteins [150, 151]. 
Indeed, the exact splicing of pre-mRNAs from genes 
regulating spermatid head structuring and acrosome and 
tail biogenesis is imperative for proper spermiogenesis. 
The RNA-Binding Motif Protein-5 (RBM5) is a key com-
ponent of the spliceosome A complex, and deleterious 
mutations lead to defective spermatid differentiation and 
NOA [152].

Spermiogenesis finally results in the development of 
mature spermatozoa that are released from the seminif-
erous tubules into the epididymis to undergo post-testic-
ular maturation before becoming competent for natural 
fertilization. Different molecular changes in the growing 
ovarian follicle and developing oocyte are necessary to 
develop a fertile egg.

Follicular maturation and formation of the zona pellucida
The control of ovarian function, somatic granulosa cells’ 
fate, and oocyte’s developmental competence are under 
the concerted action of the Growth/Differentiation Fac-
tor-9 (GDF9) and the Bone Morphogenetic Protein-15 
(BMP15). GDF9 and BMP15 belong to the TGF-beta of 
ligands that activate SMAD family transcription factors. 
Homozygous frameshift deletion in GDF9 leads to POI 
and infertility in women and mice [153]. BMP15 can het-
erodimerize with GDF9 to promote oocyte maturation 
and follicular development by regulating gene expression 
in granulosa cells.

Genome integrity and appropriate control of mRNA 
metabolism are also necessary during oocyte matura-
tion. The transcription factor p63 (TP63) maintains the 
female germline genome intact during oogenesis. Het-
erozygous TP63 gene deletion leads to the formation of 
an aberrantly activated mutant TP63 tetramer, which acts 
in a dominant negative fashion by increasing the expres-
sion of apoptosis-inducing factors, leading to cell apop-
tosis in the ovary and POI in mice and humans [154]. 
Pat1-Homolog-2 (PATL2) regulates transcription and 
translation during oogenesis, and loss of PATL2 leads 
to infertility in women due to oocyte maturation arrest 
[155]. Deletion of Patl2 in mice affects the expression of 
key transcripts during oocyte maturation, leading to a 
decreased number of ovulated MII oocytes and defective 
early embryo development [156].

In addition, aberrant ovarian development leads to 
ovarian dysgenesis likely resulting in atrophic ovaries 
and absence of folliculogenesis. Indeed, lack of Follicle 
Stimulating Hormone Receptor (FSHR) leads to atrophic 
ovaries, loss of folliculogenesis and defective ovulation in 
mice [157] and ovarian dysgenesis in humans [158].

Human oocytes are surrounded by the extracellular 
zona pellucida (ZP), composed of 4 glycoproteins, ZP1-4 
[7]. Mutations of the ZP genes affect the zona structure; 
homozygous frameshift or compound heterozygous vari-
ants affecting ZP1 result in mutant ZP1 that sequesters 
ZP3 during zona biogenesis [159, 160] or prevent the 
establishment of filament crosslinking in the matrix, 
which typically preserves the structural stability of the 
zona, leading to zona absence and infertility [161–163]. 
In addition, women or female mice with heterozygous 
nonsense mutations in ZP2 and frameshift mutations 
in ZP3 had no zona formation and primary infertility 
[164]. Moreover, deleterious missense mutations in ZP3 
prevent proper interaction with ZP2, leading to empty 
follicle syndrome due to the absence of zona formation 
[165]. A structurally intact zona surrounding a geneti-
cally-intact MII oocyte is the prerequisite for successful 
fertilization (Fig. 3).

Fertilization and early embryo development
Following asymmetric cytokinesis, oocytes enter meta-
phase II (MII) and complete meiosis II only after fusion 
with the fertilizing sperm. Inhibition of Cyclin-Depen-
dent Kinase-1 (CDK1) induces meiosis II completion 
after gamete fusion. The inhibition of CDK1 is regulated 
by the WEE2-Oocyte Meiosis-Inhibiting Kinase (WEE2), 
which is a regulator of cell cycle progression (Fig.  3). 
Women with deleterious variants in WEE2 show oocyte 
maturation defects [166] or recurrent fertilization failure 
(due to aberrant oocyte maturation) [167]. For success-
ful fertilization, sperm must swim toward the unfertil-
ized egg, undergo acrosome exocytosis, and bind and 
cross the extracellular zona. After gamete adhesion and 
fusion, egg activation allows the resumption of meiosis 
and the beginning of preimplantation embryo develop-
ment [7] (Fig. 4). The Solute Carrier Family 9 Member-
C1 (SLC9C1) is a sodium/proton exchanger that controls 
sperm motility through soluble adenylyl cyclase in men 
and mice [168]. In addition, the Potassium Channel, Sub-
family U, Member-1 (KCNU1), mediates sperm mem-
brane hyperpolarization and acrosome exocytosis, and 
men from consanguineous families and mice lacking 
KCNU1 are infertile due to impaired acrosome exocyto-
sis and zona penetration [169].

Also, Acrosin, a trypsin-like serine protease in the 
sperm acrosome, mediates sperm passage through the 
zona, and gene deletion in consanguineous men and 
hamsters leads to infertility [170, 171]. Before crossing 
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the zona, sperm bind to ZP2 [172]. Two homozygous 
ZP2 variants in consanguineous women led to zonae 
that could not support sperm binding, and women 
were infertile [173]. To cross the zona, sperm must also 
acquire hyperactive motility, a vigorous non-linear swim-
ming pattern, which, in mice, is mediated by CatSper, 
a sperm-flagellar specific and Ca2+-selective channel 
[174]. CatSper is composed of nine known different 
proteins coded by individual genes. Loss of CATSPER1 
or CATSPER2 leads to infertility in men due to reduced 
sperm count [175] or asthenoteratozoospermia [176].

After crossing the zona, acrosome-reacted sperm 
adhere to the oolemma through the direct interaction 
between the sperm membrane ligand IZUMO1 and its 
oocyte receptor, JUNO [177]. After adhesion, gametes 
fuse, and the sperm protein Phospholipase C-Zeta-1 
(PLCζ1) mediates egg activation through Ca2+ signal-
ing. Consanguineous men lacking PLCζ1 present normal 
sperm parameters, yet they cannot fertilize eggs due to 
a defective oocyte activation [178, 179]. In addition, del-
eterious mutations in PLCζ1 induce a mislocalized and 
decreased expression of PLCζ1 in the sperm head, which 
results in infertility [180]. Also, men with homozygous or 
compound heterozygous pathogenic variants in Actin-
Like7a (ACTL7A) and 9 (ACTL9) present sperm lacking 
PLCζ expression in the head, which leads to failed oocyte 
activation [181, 182]. Contrarily to humans, transgenic 
male mice lacking PLCζ1 are subfertile, as their sperm 
often (though not always) fail to activate the MII oocytes 
[183].

After fertilization, preimplantation embryo devel-
opment is regulated by preserving a precise balance 
between cell pluripotency and cell differentiation, which 
is necessary for successful implantation (Fig.  4). In the 
blastocyst, the Caudal Type Homeobox-2 (CDX2)-
expressing trophectoderm and the pluripotent inner cell 
mass (ICM) define two distinct lineage specifications. 
In humans, Pou Domain-Class-5-Transcription Fac-
tor-1 (POU5F1) transcripts are detected at the four-to-
eight-cell stage, yet the OCT4 protein is detectable at 

the eight-cell stage [184]. Genome editing studies have 
reported that deletion of POU5F1 by CRISPR/Cas9 in 
human zygotes resulted in developmental defects before 
blastocyst formation [185]. Loss of POU5F1 in human 
embryos leads to failure to complete blastocyst formation 
and embryonic lethality [185].

Conclusions
Almost half a century after the first baby was conceived 
through IVF [2], our understanding of the genetics and 
molecular biology underlying fertility disorders has 
remarkably increased. Genetic reports on infertile indi-
viduals from populations with high consanguinity rates 
have successfully identified more infertility-causing 
mutations. Besides, CRISPR/Cas-genome editing tools 
have facilitated the functional characterization of genes 
regulating mammalian reproduction. Thus, the increased 
available numbers of known genes and variants caus-
ing fertility phenotypes allow fertility specialists to treat 
patients with personalized therapies based on their 
genetics. However, despite the increased understanding 
of the functions of individual reproductive proteins, a few 
key questions still need to be answered.

 
Can deleterious heterozygous variants in multiple genes 
affect the fertility of one individual? Recent studies in 
mice show how even deleterious heterozygous variants 
affecting distinct but functionally related genes may lead 
to reproductive phenotypes such as male infertility due to 
MMAF [186]. These discoveries raise the hypothesis that 
some idiopathic male infertility cases could be explained 
by heterozygous deleterious variants affecting multiple 
loci within the same intracellular pathways.

 
Is the mouse the best organism to model human repro-
ductive disorders? Combining genome sequencing of 
infertile consanguineous individuals with the deletion of 
candidate genes in transgenic mice can be an effective 
strategy for studying the genetics of infertility. However, 
deleting conserved genes in different mammalian species 

Fig. 4 Genetics of fertilization and preimplantation development. Genes coding for proteins mediating sperm physiology, gamete interaction, and early 
embryo development (gene OMIM ID). Deletions of these genes present comparable or dissimilar fertility phenotypes in mice vs. humans
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may lead to differences in the severity of fertility pheno-
types or the sex affected. For example, the genetic abla-
tion of Acrosin results in no fertility phenotype in mice, 
subfertility in rats, or complete infertility in hamsters 
and humans [170, 171]. Moreover, because Piwi genes 
regulate spermatogenesis in mice, their role in preserv-
ing women’s fertility has been neglected. However, in 
hamsters, Piwi genes control oogenesis and early embryo 
development, and deleting genes regulating the Piwi-
interacting RNAs pathway in hamsters leads to male and 
female infertility [187, 188]. Interestingly, the expression 
pattern of Piwi genes in humans is highly similar to ham-
sters. Therefore, the hamster represents another promis-
ing model for studying human infertility.

 
Does inbreeding increase the incidence of monogenic 
forms of infertility? From a public health perspective, it is 
still unclear whether consanguineous populations experi-
ence a higher incidence of monogenic forms of infertility 
[189]. Several studies report that inbreeding increases the 
relative risk for monogenic recessive disorders; thus, it is 
reasonable to hypothesize that inbreeding augments the 
risk of monogenic infertility.

 
To address these questions, future research should con-
tinue combining NGS of infertile patients with mam-
malian models of reproductive disorders to expand the 
knowledge on the genetics of infertility. In addition, 
genomic data from inbred populations will help deter-
mine whether high consanguinity rates lead to increased 
primary infertility cases.

Abbreviations
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