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Abstract

This review aims to encapsulate the current knowledge in extracellular vesicles extracted from amniotic fluid

and amniotic fluid derived stem/stromal cells. Amniotic fluid (AF) bathes the developing fetus, providing nutrients
and protection from biological and mechanical dangers. In addition to containing a myriad of proteins, immuno-
globulins and growth factors, AF is a rich source of extracellular vesicles (EVs). These vesicles originate from cells

in the fetoplacental unit. They are biological messengers carrying an active cargo enveloped within the lipid bilayer.
EVs in reproduction are known to play key roles in all stages of pregnancy, starting from fertilisation through to par-
turition. The intriguing biology of AF-derived EVs (AF-EVs) in pregnancy and their untapped potential as biomarkers
is currently gaining attention. EV studies in numerous animal and human disease models have raised expectations
of their utility as therapeutics. Amniotic fluid stem cell and mesenchymal stromal cell-derived EVs (AFSC-EVs) provide
an established supply of laboratory-made EVs. This cell-free mode of therapy is popular as an alternative to stem cell
therapy, revealing similar, if not better therapeutic outcomes. Research has demonstrated the successful application
of AF-EVs and AFSC-EVs in therapy, harnessing their anti-inflammatory, angiogenic and regenerative properties. This
review provides an overview of such studies and discusses concerns in this emerging field of research.
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Introduction and background

Composition of amniotic fluid

Amniotic fluid (AF) is a unique conditioning medium for
the developing fetus throughout gestation until birth [1].
The composition and volume of AF changes across ges-
tation and aligns with key gestational stages [2]. The AF
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volume increases linearly from first trimester until about
33 weeks gestation and then reduces towards full-term
[3]. It starts as a by-product of maternal serum consisting
of water and electrolytes and gradually changes to fetal
products by the late second trimester [1, 4—6]. In the early
weeks of gestation, the fetal skin is a simple epithelium
layer, as such AF freely diffuses across [5]. However, after
keratinization completes, around week 25, fetal urination
becomes the main source of increasing AF volume, while
fetal lung secretions also contribute significantly [3]. Fetal
“respiration” and swallowing remain the principal routes
for AF resorption [3, 7]. At term, the human fetus pro-
duces 800-1200 ml of urine per day, which can replace
the entire AF volume within 12-24 h [8, 9].

AF is rich in numerous nutrients and growth factors
supporting fetal development [10], while antibodies and
antibacterial agents present within the fluid help to pro-
tect the fetus from infections [11]. Apart from playing an
integral part in fetal health, AF has been a useful prenatal
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diagnostic sample, since amniocentesis was first per-
formed in the late 1960s for fetal karyotyping [1].

What are extracellular vesicles?

Extracellular vesicles (EVs) are lipid-bilayer mem-
brane-enclosed vesicles that are secreted by virtually all
cells [12]. Their diameter can range from small EVs of
30-150 nm to oncosomes of 10 um [13]. Since the first
description of EVs in the 1980s [14, 15], EVs have been
extensively researched in health and disease. There are
many classes of EVs, including exosomes, oncosomes,
shedding microvesicles, migrasomes and apoptotic bod-
ies. The categorisation is based on their biogenesis and
secretion mechanisms, size, and function [16—18]. EVs
secreted by the host cells can mediate both proximal and
distal signalling events in organisms [19-21]. Their bio-
logical cargo is transported intact, avoiding degradation
through the protection of the lipid bilayer membrane
[22]. Their unrestrictive crossing of the blood—brain bar-
rier makes them an appealing delivery mode for central
nervous system therapeutics [23, 24].

EVs as a method of studying human reproduction

EVs have been a valuable source of information about
human reproduction. Examples include uterine luminal
fluid EVs in fertilisation, maintaining the sperm viabil-
ity in the oviduct and continuity of pregnancy by keep-
ing Ca®* homeostasis [25]. The potential influence can be
attributed to their selectively packaged cargo [26]. They
appear to play a critical role in embryo implantation,
establishing the first communication between the mother
and the conceptus [27, 28]. Placental EVs are known to
influence uterine spiral arterial remodelling under physi-
ological conditions, but might be compromised under
pathological conditions [29].The role of AF-EVs in partu-
rition [30, 31] is discussed later in detail.

It is evident that the molecular signature of AF-EV
cargo changes according to feto-maternal pathologies,
creating opportunities for many clinical applications.
Pregnancy complications such as pre-eclampsia [32] and
preterm labour [30, 33], fetal complications such as con-
genital hydronephrosis [34] and fetal alcohol syndrome
[35] have been studied using AF-EV borne molecules,
which are discussed later in detail. While these stud-
ies are beneficial in biomarker discovery and knowledge
gain, they are yet to achieve clinical translation.

Amniotic fluid EVs and amniotic fluid stem/stromal cell EVs
in therapy

Therapeutic applications of EVs have been investigated by
researchers, mostly as drug delivery vehicles [23, 24, 36].
However, AF-EVs and AFSC-EVs are more than a trans-
port mode for exogenous therapeutics. They are loaded
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with endogenous molecules with therapeutic potential,
that can influence tissue regeneration, anti-inflammation,
paracrine signalling, and immunomodulation [37, 38].
Unmodified EVs isolated from term AF have been tested
in pre-clinical models to treat conditions such as bron-
chopulmonary dysplasia [39] and azoospermia [40]. They
have also been used in human trials to treat severely ill
COVID-19 patients. Case studies performed in the USA
demonstrated the safe clinical use of AF-EVs in humans,
successfully improving lung function of intubated
COVID-19 patients [41, 42].

EVs derived from amniotic fluid stem cells/stromal
cells (AFSC-EVs) are a popular choice for therapeutic
experimentation in pre-clinical models, owing to the easy
access to the source material and successful laboratory
production. The studies included in this review used sev-
eral distinct terms to identify the cell populations—stem
cells, mesenchymal stem cells and mesenchymal stro-
mal cells. The field of stem cell research acknowledges
the potential ambiguity in cell nomenclature by vari-
ous research groups [43—-45]. Therefore, for the purpose
of this review, we have used AFSC-EVs to identify EVs
derived from the conditioned media of all three different
cell types mentioned.

EVs from AF stem cell cultures appear to have a more
consistent paracrine profile than stem cells, thus avoid-
ing the unpredictability that is tied with stem cell ther-
apy [38]. AFSC-EVs have produced positive responses in
preclinical studies of various pathologies, including pre-
mature ovarian failure [46], cardiac injury [47, 48], neu-
roinflammation [49, 50] and necrotising enterocolitis [51,
52].

The aim of this narrative review is to summarise the
current knowledge of AF-EVs and AFSC-EVs, including
their isolation and characterisation, physiological and
pathological implications, and potential clinical applica-
tions. Due to the variability in methods used to isolate
EVs, studies discussed in this review include a wide range
of EV sizes and categories with varying molecular prop-
erties, including microparticles, microvesicles, exosomes
and nanovesicles (Table 1).

Selection of studies
PubMed Central was searched on the 13th of June 2023,
using the keyword combination (exosomes OR extracel-
lular vesicles) AND amniotic fluid, using the advanced
search option. A total of 148 search results published
from 2000 to June 2023 was retrieved. Articles were
included if they were full manuscripts published in Eng-
lish reporting original research on EVs directly isolated
from AF or from AF stem cell cultures.

A list of 74 articles was selected for full-text review
after screening of titles, abstracts, and keywords, of
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Table 1 Vesicle types included in this review
Vesicle type Description (as indicated in the studies) Vesicle size
range (nm)

Exosomes Includes both ultracentrifugation-based crude extractions and further purified vesicles using density gradi- ~ 30-150

ent centrifugation, filtration, or chromatographic methods
Microparticles Isolated using a 13,000-18,000g centrifugations 100-200
Microvesicles Isolated using a final 100,000g ultracentrifugation 100-400
Nanovesicles Isolated using a final 100,000g ultracentrifugation 40-200
Extracellular vesicles Isolation methods vary: 20,000-200,000g centrifugations, commercial kits and polymeric precipitation 30-1000

methods

May or may not involve further purification using density gradient centrifugation, filtration, or chromato-

graphic methods
Small extracellular vesicles Isolated using a 100,000g ultracentrifugation 30-150

This review discusses several types of vesicles as named in the research studies included. Irrespective of similar isolation methods and overlapping vesicle sizes, some

EV populations were named differently, or vice-versa

which 7 irrelevant studies were excluded. Two articles
were retrieved after a manual search of reference lists
of included articles. A total of 69 full-text articles were
included (Additional file 1. List of included studies)
(Fig. 1). Forty-four (64%) studies were published since
2020. We performed a narrative overview and content
synthesis of the final included articles.

AF-EV isolation

The source of AF

The majority of studies derived human AF samples from
clinically-indicated amniocentesis (18), term labour or
Caesarean section (13). Three studies did not state the

source of AF. Two other groups studied murine and ovine
AF (Table 2).

Lack of standardization in AF-EVs isolation methods

The most common method to isolate small AF-EVs was
differential centrifugation coupled with ultracentrifuga-
tion. The majority of studies performed centrifugation
at 300g for 15 min to remove cells, followed by 2000g for
20 min to eliminate cellular debris. This step was most
commonly followed by centrifugation at 10,000g for
30 min and filtration to remove larger vesicles. Ultracen-
trifugation at 100,000—120,000¢ for varying time periods
pelleted down small EVs.

Various methods were reported for further purifica-
tion of EVs following ultracentrifugation. While some
researchers opted for density gradient centrifugation
or ion exchange chromatography, others used commer-
cially available kits for EV isolation (Table 2). Research-
ers preferred amniocentesis for sample collection over
Caesarean section and differential centrifugation for EV
isolation as indicated in Table 3 (a summary of Table 2).

Ebert and Rai developed an unconventional three-step
centrifugation protocol to isolate AF-EVs, that involved

addition of dithiothreitol (DTT) to the EV pellet to dena-
ture external protein aggregates [53]. This method may
not be suitable for studies focusing on EV membrane
proteins as DTT can denature the ectodomains of pro-
teins. Others used a centrifugation-based method in
combination with filtration and commercially available
chromatography columns for EVs isolation from small
volumes (down to 250 pL) of AF [54]. A comparison of
methods study stated that ultracentrifugation resulted
in better EV yield from human AF than commercial exo-
some isolation reagents [55].

The variability in methods may partly be due to the
variability in samples. For example, term AF contains
vernix caseosa (white wax-like substance covering the
fetal skin) compared to second trimester AF, requiring
strenuous sample cleaning steps. While AF can be a chal-
lenging sample, one would expect to have largely consist-
ent methods for EV isolation from conditioned media
derived from cell cultures.

Amniotic fluid stem/stromal cell EV isolation
Amniotic fluid stem/stromal cell cultures are used
as a reliable supply of EVs
Many researchers have isolated AF stem or stromal cells
and cultured them to provide a convenient and continu-
ous in vitro source of EVs. These studies used human/
murine primary or cryopreserved cells obtained from
second-trimester amniocentesis, elective Caesarean sec-
tions or both. Five research groups obtained mouse AF
stem cells (Table 4), presumably to maintain the consist-
ency with experimental animal models. Table 5 summa-
rises this information, providing a count of studies that
used different sample sources and EV isolation methods.
Stem cells were most commonly isolated from AF by
fluorescence activated cell sorting for c-Kit expression
[47, 48, 52, 56-58] or for CD44/CD105 expression [59].
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Identification of studies via databases and registers
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Fig. 1 PRISMA flow chart of the study selection criteria for the review. A thorough literature search via NCBI Pubmed resulted in 148 articles,

of which 69 were included in this review, after excluding irrelevant studies

Other researchers cultured cells from AF and separated
the colonies based on the fibroblast morphology of the
cells [60, 61]. Whether these different methods impact
EV biogenesis and secretion pathways differently in stem
cells is yet to be understood.

Majority (79%) of the AFSC-EV studies included in
this review referred to their cell populations as stem cells
while 2 studies mentioned the isolation of mesenchymal
stromal cells. Five other studies mentioned the use of
mesenchymal stem cells. Table 4 describes different cul-
ture conditions used by research groups to grow the iso-
lated cells.

A variety of isolation methods for AF stem/stromal cell EVs
There is a variety of methods of EV isolation from AF
stem cell-conditioned media, but most employed some
form of differential centrifugation with many variations
in the centrifugation steps. Studies published in the past

2-3 years commonly used the classic approach of differ-
ential centrifugation steps to remove live and dead cells
(500g), cell debris (2000g), large vesicles (10,000—15,000g)
and a final ultracentrifugation collecting small EVs
(100,000-120,000g) (Table 4). A recent study compar-
ing ultracentrifugation and a novel polyethylene glycol
(PEG)-based EV precipitation method demonstrated that
PEG-based isolation produced approximately five times
more EV yield and EV proteins, but one third the EV-
RNA content compared to ultracentrifugation [62]. The
choice of isolation method may consequently influence
the properties of EVs [62].

Isolation methods depend on the differential density,
solubility factors and size of the target EVs [63]. Efforts to
standardize EV research by the International Society for
Extracellular Vesicles is reflected in the studies published
since 2020, with a degree of consistency in methods com-
pared to earlier studies. However, all methods result in
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Isolated EV population Sample source

Initial centrifugation steps
Spin (g), time (min)

EV isolation method

Further purification

Exosomes [22]

Exosomes [30]

Exosomes [31]

EVs [32]

EVs [33]

Exosomes [34]

Exosomes (murine) [35]

EVs [39]

Exosomes (sheep) [40]

EVs (commercial prod-
uct: Zofin) [41,42,122]

EVs [53]

Exosomes [54]

Exosomes [55]

Microparticles [67]

Exosomes [68]

Exosomes [70]

EVs [72]

EVs [73]

EVs [74]

Exosomes [81]

Amniocentesis (approxi-
mately 16 weeks)

Collection at labour/caesar-
ean section

Collection at labour/caesar-
ean section

Caesarean section

Amniocentesis (17—
36 weeks)
Amniocentesis

Collection with a needle
directed to amniotic cavity
after euthanization
Caesarean section

Not specified

Caesarean section
Not specified

Collection at labour/caesar-
ean section

Amniocentesis (15—
16 weeks)

Collection at labour/caesar-

ean section

Amniocentesis (approxi-
mately 16 weeks)

Amniocentesis

Caesarean section

Amniocentesis (16—

17 weeks)

Caesarean section

Amniocentesis

i) 300g, 20 min
ii) 10,0009, 20 min

i) 2000g, 30 min
ii) 2000g 45 min

i) 300g, 10 min
ii) 2000g, 30 min
iii) 12,0009, 45 min

i) 300g, 5 min

ii) 500g, 10 min

i) 10,000g, 30 min in a cell
sieve

i) 300g, 20 min
ii) 10,0009, 20 min

i) 300g, 20 min
ii) 10,0009, 30 min

Filtration system (details
unavailable)

i) 300g, 10 min

ii) 2000g, 15 min

iii) 10,000g, 30 min

iv) Filtration

through 0.22 pm-sized
microfilter

i) 3000g, 20 min

ii) 20,0009, 20 min

i) 300g, 10 min

ii) 2000g, 20 min

i) 10,000g, 30 min

i) 48,298g, 30 min

ii) Filtration through 0.22 um
filter

1500g, 15 min

i) 300g, 10 min
ii) 10,0009, 20 min

i) 300g, 5 min
ii) 1200g, 20 min
iii) 10,000g, 30 min

i) 500g, 10 min
ii) 2000g, 15 min

iii) Filtered through a 0.22 um

i) 300g, 10 min
ii) 2000g, 20 min
iii) 10,000g, 45 min

i) 300g, 5 min
ii) 1200g, 20 min
iii) 10,000g, 30 min

100,000g, duration not clear

100,000g, 2 h

Filtration through a 0.22-um
filter and centrifugation
at 120,000g, 70 min, twice

100,000g, 2 h

Commercial EV isolation Kit
100,000g, 2.5 h

120,000g,>18 h

100000g, 3 h

100,000g, 1 h

Centrifugation and filtration

Incubate with DTT 20,000g,
20 min

100,000g, 2 h

584,401g, 60 min

13,000g, 2 min

i) 100,000g,2 or 18 h
for human AF-EVs

ii) 120,000g, overnight
for murine AF-EVs

100,000g, 1 h

100,000g, 3 h

100,000g, 1 h

Commercial EV isolation Kit
or 107,000g, 1.5 h

100,000g, 1 h

Sucrose density gradient cen-
trifugation at 100,000g, 2.5 h

i) Filtration through a 0.22 um
filter

ii) Centrifugation at 100,000g,
2h

i) Filtration through a 0.22 um
filter

ii) Size-exclusion chromatog-
raphy

Sucrose density centrifugation
at 100,000g, 2.5 h

Commercial EV isolation Kit

Sucrose density gradient
centrifugation (1.08-1.24g
sucrose/ml) at 150,000g, 12 h
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Isolated EV population Sample source

Initial centrifugation steps
Spin (g), time (min)

EV isolation method

Further purification

EVs [84]

Exosomes [85]

Exosomes [86]
Exosomes [92]
EVs [93]
Microparticles [94]

EVs [95]

EVs [96]

EVs [98]

EVs [69, 123]

Exosomes [124]

EVs [125]

Amniocentesis

Amniocentesis (19-23)

Amniocentesis (15—
25 weeks)

Amniocentesis
(18-20 weeks)

Amniocentesis (16—
20 weeks)

Collection at Caesarean
section

Amniocentesis (15—
18 weeks)

Amniocentesis (15—
28 weeks)

Amniocentesis (approxi-
mately 17 weeks)

Amniocentesis (16—
18 weeks)

Caesarean section

Not specified

i) 1000g, 15 min

ii) 2000g, 15 min
i) 3000g, 15 min
i) 300g, 10 min

ii) 2000g, 30 min
i) 12,000g, 45 min

Unclear
400g, 10 min
1500g, 15 min

i) 250g, 5 min
i) Filtration through a 0.1 um
pore membrane

i) 300g, 10 min
ii) 3000g, 20 min
ii) 17,000g, 25 min

i) 300g, 10 min

ii) 2000g, 20 min

iii) 10,000g, 30 min

i) 3000g, 15 min

ii) 11,000g, 15 min

iii) 14,0009, 15 min

iv) Filtered through a 0.22 um

110,000g, 75 min

110,000g, 2 h

Commercial EV isolation Kit
100,000g, duration unclear
EVs in the AF were stained
(not isolated)

18,000 rpm, 30 min
20,000g, 30 min

Size exclusion chromatog-
raphy

Commercial EV isolation Kit

100,000g, 2 h

100,000g, 1 h

100,000g, 1 h

i) Filtration through a 0.22-um
filter

ii) Centrifugation at 110,000g,
70 min

Sucrose density gradient
centrifugation at 100,000g, 2 h
ORion-exchange chromatog-
raphy

Different AF-EV isolation methods were observed even within the same research group, presumably due to changed consistencies in patient samples. Gestation (in
weeks) is mentioned where possible for amniocentesis samples. min minutes, h hours

Table 3 Summary of Table 2

Number
of
studies
AF collected from amniocentesis 18
AF collected from term labour/caesarean section 13
AF collected from pre-clinical models 2
Used commercial EV isolation kits to isolate EVs 5
Used centrifugation methods to isolate EVs 32
Used filtration to separate larger vesicles prior to isolating smaller vesicles 8
Used centrifugation (~ 10,0009 spin) to separate larger vesicles prior to isolating smaller vesicles 13
Used both centrifugation (~ 10,0009 spin) and filtration in tandem to separate larger vesicles prior to isolating smaller vesicles 2
Used further purification methods to clean the isolated EVs 8

This summary of Table 2 provides a study count according to the type of starting samples, EV isolation methods used in each study
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Table 5 Summary of Table 4
Number
of
studies
Primary cells derived from AF collected at amniocentesis 18
Primsary cells derived from AF collected at term labour/caesarean section 3
Cryopreserved human cells 5
Cells derived from AF of pre-clinical models 7
Used commercial EV isolation kits to isolate EVs 7
Used centrifugation methods to isolate EVs 28
Used filtration to separate larger vesicles prior to isolating smaller vesicles 7
Used centrifugation (~ 10,0009 spin) to separate larger vesicles prior to isolating smaller vesicles 13
Used both centrifugation (~ 10,0009 spin) and filtration in tandem to separate larger vesicles prior to isolating smaller vesicles 4

Used further purification methods to clean the isolated EVs

This summary of Table 4 provides a study count according to the source of stem/stromal cells, EV isolation methods used in each study

some degree of variation in size range, purity and protein
content of each EV preparation. Some research groups
have attempted to standardize their laboratory proto-
cols by adhering to good manufacturing practices (GMP)
guidelines [41, 42, 64], or used GMP-grade AF stem cells
for culture [65]. This is an essential step in ensuring that
the findings from basic research can eventually be trans-
lated into clinical applications and scaled up into com-
mercial products.

Characterisation of EVs should adhere

to internationally accepted guidelines

The established guideline for characterising EVs and con-
firming their successful isolation is the Minimal Informa-
tion for Studies of Extracellular Vesicles (MISEV2018)
statement approved by the International Society for
Extracellular Vesicles [66]. This characterization involves
three main steps: (i) nanoparticle tracking analysis to
confirm the size range and concentration of the isolated
vesicles, (ii) transmission electron microscopy to visu-
alise their morphology, and (iii) screening for standard
EV enriched markers such as Alix, TSG-101 and tetras-
panins CD63, CD81 and CD9 (Fig. 2). Only 23 (36%) of
the included studies employed all three characterisation
methods.

Amniotic fluid EVs are abundant

and immunologically active

Human AF appears to be a more concentrated source
of EVs compared to other bio-fluids, with AF-EVs con-
centrations up to 41-times higher than maternal plasma
[67]. AF-derived exosomes are also reportedly smaller
(~100 nm) than EVs of other sources and contain stand-
ard EV markers [54]. The predominant fetal renal origin
of these vesicles has been suggested by the presence of

tetraspanin CD24, kidney marker aquaporin-2 [68] and
CD133 [32]. Other identified proteins in AF-EVs include
an obscure, lower molecular weight CA125 species [69],
tubulin and heat shock proteins Hsp72 and Hsc73 [70].
These extracellularly released heat shock-related proteins
are known as alarmins and are expressed under hypoxic,
immune or inflammatory stress conditions [71].

AF-EVs are known for their immunomodulatory prop-
erties, which can suppress T-cell activation and pro-
inflammatory cytokine release in-vitro [72]. AF-EVs
may act as both pro- and anti-inflammasome activating
agents, potentially priming the fetal immunity owing
to the presence of bacterial DNA in these vesicles [73].
Moreover, AF-EVs triggered epithelial-to-mesenchymal
transition and myofibroblast activation in stem cells [74].
These studies have revealed important biological proper-
ties of AF-EVs, suggesting their many roles and potential
uses.

AF stem/stromal cell-derived EVs are bioactive
and have distinct ‘omic profiles
The AFSC-EV therapeutics is a rapidly growing field of
research. One of the first studies exploring AFSC-EVs
reported on their active immunoregulatory proper-
ties [75]. A recent comparative study confirmed a 25%
higher EV yield from AF stem cells compared to human
bone marrow-derived stem cells, making them prefer-
able for clinical applications [76]. They contain a signifi-
cant amount of the biologically active molecules of the
secretome of AF stem cells. AFSC-EVs contain miRNA,
but not mRNA, suggesting their role in directly or indi-
rectly regulating existing signalling pathways of recipient
cells rather than enforcing new ones [47].

Researchers have suggested that AFSC-EVs are meta-
bolically independent entities [77]. Equivalently, EVs
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Fig. 2 Commonly employed EV isolation and characterisation methods. Human/animal AF or conditioned media of AF stem cell/MSC cultures
are first subjected to differential centrifugation to remove cellular debris. The supernatant is subjected to ultracentrifugation/size-exclusion
chromatography/affinity chromatography or a combination of these methods. An optional further purification of the isolated EV population

is achieved using density gradient centrifugation, filtration, or ion-exchange chromatography. Isolated EVs are characterised using nanoparticle
tracking analysis for EV concentration and size range, transmission electron microscopy for EV morphology and Western blotting to analyse EV

protein markers. Figure created with BioRender.com

isolated from semen of multiple species (human, canine,
equine, and bovine origin) produced ATP intrinsically
through the glycolytic pathway [78, 79]. Presence of
active metabolic enzymes, particularly glyoxalases and
MG-H]1, in AFSC-EVs cargo [61] adds up to this concept.

AF-EVs contain anti-inflammatory, immunomodula-
tory, and free radical scavenging properties [39]. These
functions are manifested by stabilizing telomere lengths
[80], increasing cell adhesion and migration, and regulat-
ing cytokine production under inflammatory conditions
[81] in recipient cells. These findings indicate that AF-
EVs may indirectly modulate the maternal immune sys-
tem, potentially preventing fetal rejection by the mother’s
body.

Selecting the appropriate source of AF stem cells based
on desired therapeutic outcome is essential as neonatal
and perinatal AFSC-EVs possess distinct proteomic and

transcriptomic profiles [82]. Second trimester amnio-
centesis-derived immature AFSC-EVs displayed pro-vas-
culogenic, pro-regenerative, and anti-aging properties,
while term pregnancy-derived AFSC-EVs exhibited pro-
nounced immune-modulatory and anti-inflammatory
characteristics. However, both types of AFSC-EVs had a
rich microRNA signature containing regenerative parac-
rine factors [82].

Amniotic fluid derived EVs as potential biomarkers
Exosomal shuttle RNA and fetal development

The RNA cargo in exosomes is known as exosomal shut-
tle RNA (esRNA) [83]. esRNA within AF-EVs is protected
by the lipid membrane from digestion by nucleases, mak-
ing transcripts readily available for diagnostic or prog-
nostic purposes [22]. A number of biomarker discovery
studies basing AF-EV esRNA have been published for
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fetal conditions such as congenital hydronephrosis [34],
congenital diaphragmatic hernia [84], fetal alcohol expo-
sure, osteogenic differentiation [35], congenital heart
defects [85] and ureteropelvic junction obstruction [86].
However, these studies are yet to be translated into clini-
cally useful predictors of perinatal outcomes.

AF-EVs and parturition

Labour is an inflammation driven process. Resident and
infiltrating immune cells in reproductive tissue [87, 88]
and free cytokines in AF are associated with labour, both
term and preterm [89-91]. Preterm labour, intra-amni-
otic inflammation and infection, all result in differential
packaging of cytokines in AF-EVs [33]. Placental alkaline
phosphatase (PLAP)/CD63 ratio in AF-EVs has been sug-
gested as a marker for preterm birth and preterm prema-
ture rupture of membranes [30]. Others have postulated
that fetal lung-derived EVs in AF may have a role in par-
turition, as they induced senescence-associated secretory
phenotype and proinflammatory molecules in human
amniotic epithelial cells in term pregnancies [31]. Moreo-
ver, transcription regulator HIFla contained in AF-EVs
impacts comparatively shorter interval between amnio-
centesis and parturition [92].

AF-EVs in obstetric complications

AF-EVs have been studied in a limited number of obstet-
ric complications. Elevated CD105 (endoglin) in AF-EVs
resembled augmented angiogenesis in preeclampsia
[32]. Others studied AF-derived microparticles in dis-
seminated intravascular coagulation and hypotension in
amniotic fluid embolism [67]. These fetal-origin EVs [93]
were predominantly from apoptotic events of epithelial
and leukocytic cells [94]. Their cargo included procoagu-
lant molecules such as phosphatidylserine and tissue fac-
tor [95], and extrinsic tenase complexes [96].

Congenital cytomegalovirus infection is a common
infection worldwide and may result in a range of unde-
sirable outcomes including fetal death [97]. Identification
of the association between the fetal infection and the EV-
borne pro-inflammatory cytokine profile [98], may be a
step towards predictive biomarkers for severity of fetal
infection.

While these studies have revealed potential AF-EV-
borne biomarkers for obstetric complications, they are
primarily discovery-phase reports that require to be clin-
ically validated.

Therapeutic applications of AF-EVs and AFSC-EVs

AF and AF cell-derived EVs gained substantial inter-
est as a therapeutic in regenerative medicine. Biologi-
cal activity of these EVs is dependent on the treatment
dose, rather than the specific size or purity of the isolated
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EV populations [99]. As a cell-free product loaded with
bioactive molecules, they contain many desirable prop-
erties. EVs have been shown to modulate inflammation
[58, 100-102], curb oxidative stress [103] and augment
wound healing [104, 105], ultimately leading to tissue
regeneration. Moreover, as a natural cell-derived prod-
uct, EVs present advantages such as biocompatibility and
minimal toxicity for recipients. A summary of the pre-
clinical and clinical therapeutic studies retrieved from
our literature search is presented in Table 6.

Discussion

AF is an accessible human fetal sample with significant
biological value. However, until recently, it has been
under-explored in reproductive medicine compared to
other sources such as maternal plasma and placental tis-
sue. Keller and colleagues first reported the detection of
EVs in human and murine AF in 2007 [68], but the field
remained quiescent until the past 4 years. There is an
increased interest in AF derived biologics since 2020,
making up for 64% of studies in this review.

Researchers have debated the optimal methods for EV
isolation and their purity assessment for the last decade
[63]. The community achieved consensus with the pub-
lication of the Minimal Information for Studies of Extra-
cellular Vesicles guidelines [66] regarding basic isolation
and characterization of EVs. However, EVs are a heterog-
enous group and cannot be separated by biogenesis using
existing methods [18]. Therefore, nomenclature of the
vesicles is challenging and will remain a discussion for
the foreseeable future. At present, large EVs or small EVs
seem to be the appropriate terms to describe an EV pop-
ulation, based on the employed isolation methods. Our
review shows the inconsistent terminology (Table 1) used
in reproductive EV research.

Researchers seem to prefer ultracentrifugation over
other methods for AF-EVs and AFSC-EVs isolation
(Tables 3 and 5). However, specific details such as dura-
tions of spins and speed were lacking in several studies.
Ultracentrifugation is considered the “gold standard”
method for EV isolation due to its reliability and opti-
mal yield [106, 107]. However, EV samples isolated using
ultracentrifugation require further purification methods
to achieve homogeneity. The use of other methods such
as commercially available chromatography columns and
polymeric precipitation were observed when sample
sizes were too small for centrifugation. Many factors such
as the source material and its volume, EV size range of
interest and the downstream use of the isolated EVs can
influence the isolation methods. Nonetheless, the choice
of isolation method largely appeared to be at the discre-
tion of individual research groups. A clear and globally
accepted, robust set of guidelines for the methodologies
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for AF derived EVs would benefit this emerging research
field.

The laborious nature of the differential centrifugation
and ultracentrifugation procedures limits the scalabil-
ity for EV production for clinical use [108]. Commercial
products are attractive solutions but have not gained
widespread acceptance as only 17% of studies in this
review have utilized them. Methodological studies have
compared the commercial EV isolation kits versus ultra-
centrifugation [55], and the use of both methods together
in the same protocol [54] resulting in varying infer-
ences. Regardless of these time and labour effective new
commercial products, ultracentrifugation remains the
preferred method for most researchers. Studies have pre-
sented EV concentrations using a range of units such as
particles per gram of EV proteins, vesicles per millilitre
of fluid (it is unclear if the fluid refers to AF or the EV
suspension buffer) and EV proteins (ug) per millilitre.
Adoption of a standard unit such as vesicle number per
millilitre/gram of starting material (body fluid/tissue) or
per million cells would help advance the field by allowing
more direct comparisons of results and facilitating repli-
cation of studies.

EV isolation from conditioned media requires spe-
cific conditions. Use of serum-free culture media or EV-
depleted FBS in the media is widely accepted, to avoid
introducing exogenous EVs. Other components such
as antibiotics, growth factors and supplements can also
affect EV biogenesis and their cargo [66]. Confluence of
cells, culture temperature, percentage CO,, O, and incu-
bation time before EV isolation may all alter EV yield,
quality and their biomolecule content [109, 110].

Therefore, it is important all information is reported
accurately in publications and lack thereof may result in
lack of reproducibility. Many groups studied RNA cargo
in EVs to develop predictive disease biomarkers. How-
ever, the effect of different EV and evRNA purification
methods for downstream sequencing and profiling is not
known [18]. Standardization of methodologies and ter-
minology for publications is of central importance going
forward. The compliance of experimental protocols with
good manufacturing practice guidelines is highly com-
mendable, which improves the quality of research and
reproducibility across laboratories, facilitating smooth
clinical translation.

Only one clinical application for AF-EVs has progressed
to human clinical trials, no doubt accelerated by the
urgency to develop novel therapies during the COVID-
19 pandemic. Zofin, a human AF derivative enriched
for EVs, is being evaluated in COVID-19 patients with
severe acute respiratory syndrome in three separate stud-
ies, by the same group (NCT05228899, NCT04657406,
NCT04384445). These clinical trials are still in progress,
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but pilot studies have proved safe use of AF-EVs with
improved clinical outcomes.

The appeal of AF-EVs for COVID-19 treatment lies in
their anti-inflammatory properties and their potential to
curb the ‘cytokine storm’ of severe disease. Another clini-
cal trial in Israel (NCT04747574) administered CD24-
loaded EVs derived from HEK293 cells to COVID-19
patients, with encouraging outcomes [111]. Several other
groups have also manifested the safety and feasibility of
using acellular AF (not enriched for EVs) to treat COVID-
19 patients in the clinic [112, 113]. Treatments for other
inflammatory diseases also have shown the capacity of
both AF-EVs and AFSC-EVs to reduce inflammation,
restoring tissues or cells to their homeostatic state.

The number of clinical trials using AF-EVs or AFSC-
EVs is currently minimal. However, clinical trials have
used processed or unprocessed AF to treat chronic
wounds (NCT04438174), osteoarthritis (NCT03074526,
NCT02768155, NCT04886960), stenosing tenosynovitis
(NCTO03583151) and venous stasis ulcer (NCT04647240)
among many others. The need for expertise, purpose-
built instrument and laborious nature of isolating EVs
may have delayed AF derived EV research reaching clini-
cal translation.

Regenerative properties of AF-EVs and AFSC-EVs were
used to treat necrotizing enterocolitis, premature ovarian
failure and wound healing [99, 114]. Most studies dem-
onstrated the desirable outcomes of these EV treatments
in in-vitro and in-vivo models and some studies deci-
phered the underlying molecular mechanisms. In-depth
understanding of the mechanisms will be beneficial in
translating the findings to clinical applications. For exam-
ple, AFSC-EVs treatment of cystinosis may have revealed
a prospective targeted therapy for this rare disease, as
the EVs were naturally loaded with cystinosin and repro-
grammed the recipient mutant cells [115].

Stem cell-EV therapy has emerged as an attractive alter-
native to stem cell therapy, as it omits the challenges of
unpredictable host rejection and poor efficacy. The shift
in interest was promoted by research studies increasingly
implying that the therapeutic effect of stem cells is medi-
ated by the extracellular paracrine factors exerted via
EVs [38]. Many research studies have demonstrated the
successful utility of AFSC-EVs in pre-clinical models to
treat different pathologies including necrotizing entero-
colitis [51, 52, 100, 101], hypoplastic neonatal lungs [65,
116, 117] and wound healing [104, 105]. AF composition
is dynamic and often represents the gestation-dependent
development of fetal organs [118, 119]. Accordingly, the
careful choice of gestation for AF collection according to
the intended purpose of EVs was observed in these stud-
ies (Fig. 3). For example, for lung function-related thera-
pies, AF obtained from elective Caesarean sections at
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Fig. 3 Gestation of amniotic fluid is matched with intended therapeutic use. The gestation at which the AF was collected was often matched
to the therapeutic purpose of the research studies/clinical trials. For example, second trimester AF derived EVs were used when the regenerative
properties of EVs were desired whereas third trimester AF derived EVs were preferred for lung function therapies. Researchers obtained second
trimester AF from amniocentesis and third trimester AF from labour/Caesarean section at term. Figure created with BioRender.com

term was used for EV or stem cell isolation, as fetal lungs
rapidly develop close to parturition [120]. For other con-
ditions, such as treating wound healing and necrotising
enterocolitis, researchers used samples from second-tri-
mester amniocentesis, where the AF is rich with factors
implicated in tissue regeneration.

Our understanding of the biological difference between
AF-EVs and AFSC-EVs is narrow and therefore there is
currently no definitive evidence to propose biological
superiority of one over the other. They conceivably are
not bioequivalent and cannot be used inter-changea-
bly. This is a grey area that has not been looked at yet.
Researchers seem to be interested in EVs from both
sources alike. Thirty-four (49%) articles included in this
review used AF-EVs while 35 (51%) used AFSC-EVs.
Since AFSC-EVs originate from one cell type, presumably
they have minimal batch variations and more predictable
biological properties compared to AF-EVs—both benefi-
cial properties for clinical use. Therefore, a comprehen-
sive comparison between AF-EVs and AFSC-EVs can
benefit their applications.

If these EVs clear the hurdles to become therapeutics,
AF collection and processing mechanisms will need to
be increased and standardised. Additional research is
needed to assess the inherent variation in AF samples
from different donors and the suitability of singular or
pooled samples for clinical applications. Despite the great

excitement, there is a real risk that many studies of EVs as
prognostic markers or therapies may be lost in the ‘val-
ley of death’ between preclinical studies and clinical trials
[121]. Therefore, further research, together with stand-
ardisation, may immensely progress the translation of
these findings into clinical applications.
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