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Abstract 

Background SARS-CoV-2 mRNA vaccines are highly immunogenic in people living with HIV (PLWH) on effec-
tive antiretroviral therapy (ART). However, whether viro-immunologic parameters or other factors affect immune 
responses to vaccination is debated. This study aimed to develop a machine learning-based model able to predict 
the humoral response to mRNA vaccines in PLWH and to assess the impact of demographic and clinical variables 
on antibody production over time.

Methods Different machine learning algorithms have been compared in the setting of a longitudinal observational 
study involving 497 PLWH, after primary and booster SARS-CoV-2 mRNA vaccination. Both Generalized Linear Models 
and non-linear Models (Tree Regression and Random Forest) were trained and tested.

Results Non-linear algorithms showed better ability to predict vaccine-elicited humoral responses. The best-
performing Random Forest model identified a few variables as more influential, within 39 clinical, demographic, 
and immunological factors. In particular, previous SARS-CoV-2 infection, BMI, CD4 T-cell count and CD4/CD8 
ratio were positively associated with the primary cycle immunogenicity, yet their predictive value diminished 
with the administration of booster doses.

Conclusions In the present work we have built a non-linear Random Forest model capable of accurately predict-
ing humoral responses to SARS-CoV-2 mRNA vaccination, and identifying relevant factors that influence the vaccine 
response in PLWH. In clinical contexts, the application of this model provides promising opportunities for predicting 
individual vaccine responses, thus facilitating the development of vaccination strategies tailored for PLWH.
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Background
Since the beginning of the SARS-CoV-2 pandemic, peo-
ple living with HIV (PLWH) have been considered at 
higher risk of serious illness and severe outcomes from 
COVID-19. Despite conflicting data emerged from pre-
liminary analyses conducted in small cohorts [1, 2], 
subsequent larger observational studies confirmed that 
PLWH may suffer worse COVID-19 outcomes compared 
to the general population, especially in the presence of 
scarce immune reconstitution despite antiretroviral ther-
apy (ART) and in case of unsuppressed HIV replication 
[3–8].

Owing to such vulnerability, PLWH were prioritized 
for SARS-CoV-2 vaccine administration since the early 
phases of the vaccination campaign. Research conducted 
to date agrees that, overall, PLWH mount immune 
responses to the primary cycle of SARS-CoV-2 vaccine 
which are comparable to those developed by HIV-nega-
tive people [3, 9]. However, when assessing HIV-specific 
factors typically related to adverse outcomes, such as low 
CD4 T-cell counts, inverted CD4/CD8 ratio, and uncon-
trolled HIV viremia, they invariably appeared associated 
to impaired cellular and humoral responses [3, 9–12], 
suggesting that PLWH with poor immune restoration 
and/or ongoing HIV replication should receive booster 
doses. An additional vaccine dose has been shown to 
substantially improve humoral responses in PLWH with 
hyporesponse after primary cycle [13–15]. However, 
whether HIV-related viro-immunological parameters or 
other factors may have an impact on immune responses 
to  booster vaccination in PLWH is unclear [13, 16–18], 
yet it would be of utmost importance to personalize 
boosting strategies in the current phase of shifting from 
the pandemic to the endemic stage of COVID-19.

Generally, in biological contexts where regression 
analysis is required to study associations between vari-
ables, linear regression models alongside various fea-
ture selection strategies are commonly used [19, 20]. In 
recent years, advancements in machine learning strate-
gies have enabled the quantification of both linear and 
non-linear associations in an unbiased manner and pro-
vided a comprehensive characterization of more intri-
cate and complex interactions among predictor variables 
of a certain outcome [21]. Such approaches have been 
employed to identify key clinical factors associated with 
antibody responses and to predict vaccine immunogenic-
ity in fragile and immunosuppressed populations such as 
organ transplant recipients [22, 23]. However, the util-
ity of these algorithms in predicting immune responses 
to SARS-CoV-2 vaccines in PLWH has not been fully 
explored.

In the present study, we compared different machine 
learning algorithms in the setting of a large observational 

study involving 497 PLWH after primary and booster 
SARS-CoV-2 mRNA vaccination, to develop a model able 
to accurately predict vaccine-elicited humoral immu-
nity  and identify relevant factors that influence vaccine 
response over time in this vulnerable population.

Methods
Study design
The San Paolo Infectious Diseases HIV-Vax (SPID-HIV-
Vax) is  a prospective observational study which was 
established in March 2021 that enrolled 800 PLWH who 
received the anti-SARS-CoV-2  Spikevax™ mRNA vac-
cine (Moderna) at the Clinic of Infectious Diseases and 
Tropical Medicine, San Paolo Hospital, ASST Santi Paolo 
e Carlo, Department of Health Sciences, University of 
Milan, Milan, Italy. Data concerning demographic char-
acteristics, comorbidities, HIV-related features and self-
reported previous SARS-CoV-2 infection were collected 
at enrollment using RedCap electronic data capture tools 
[24]. PLWH within SPID-HIV-Vax cohort were eligible to 
participate in the present study if they met the following 
criteria: availability of at least one post-vaccine anti-S IgG 
determination between March 2021 and January 2023, 
and availability of all baseline demographic and clinical 
variables included in the original database.

The study was approved by the local Ethical Committee 
and written informed consent was obtained from each 
participant.

Biological samples collection and antibody quantification
From each participant, venous peripheral blood samples 
were collected at the following time points: day of first 
dose (T0); 1 month after first dose—coinciding with the 
day of second dose—(T1); 1  month after second dose 
(T2); 6 months after second dose—coinciding with third 
dose administration—(T3); 1 month after third dose (T4); 
6  months after third dose (T5); 12  months after third 
dose—coinciding with fourth dose administration—(T6); 
1  month after fourth dose (T7); 6  months after fourth 
dose (T8) (Fig. 1). Anti-trimeric Spike (S) IgG antibodies 
were quantitatively determined in serum samples by the 
LIAISON® SARS-CoV-2 TrimericS IgG assay (DiaSorin, 
Italy), and concentration expressed as binding antibody 
units per milliliter (BAU/mL).

Statistical and machine learning models
To build a model capable of predicting antibody response 
to vaccination based on available demographic and clini-
cal parameters both linear and non-linear  regression 
methods were employed and compared. Variables were 
normalized using z-score transformation when numeric 
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and converted into dummy variables when categorical. 
The independent variables used as predictors encom-
passed demographic characteristics, comorbidities, 
viro-immunological HIV-related parameters, HIV epi-
demiology, and ART, totaling 39 variables. A temporal 
variable accounting for the days elapsed since the first 
vaccine dose administration was also included to build 
all algorithms. All models employed a train-and-test 
strategy, with the 80% of the dataset used as the training 
set, while the remaining 20% as the test set for evaluating 
model-performances. The metrics used to assess model 
quality were calculated as the mean values obtained 
through a fivefold cross-validation (CV): R-squared  (R2) 
and Root Mean Squared Error (RMSE) for both linear 
and non-linear models. Only for linear models, Akaike 
Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) were computed during the training 
phase.

Generalized linear models
For the construction of linear models, the glm function 
from the stats package v3.6.2 via R statistical software 
v4.3.1 was employed. Feature selection was performed 
by Stepwise and Multi-Model inference to mitigate 
high dimensionality and multicollinearity issues.

Stepwise variable selection was executed employing 
both forward (SF) and backward (SB) approaches by 
means of the pre-built-in stepAIC function in R. Multi-
model (MM) inference was conducted using the glmulti 
package v1.0.8 by generating all possible linear combi-
nations of the independent variables and testing each 
model with the aim of AIC minimization. Due to the 
impracticality of testing all possible linear combina-
tions with all the variables, dummy variables related to 
comorbidities (12 variables) were excluded. Thus, over 
4 million combinations were tested, with each iteration 
fitting a glm via an exhaustive screening method.

Non‑linear models
Tree Regression and Random Forest analyses were 
conducted using the rpart v4.1.23 and the random-
Forest packages v4.7–1.1 in R, respectively. Regarding 
Tree  Regression, an analysis of variance (ANOVA) was 
chosen as the criterion for assessing node split quality, 
while default settings were retained for all other param-
eters. For Random Forest, hyperparameter tuning led to 
the selection of 300 trees as the optimal parameter within 
the range of 10–10,000. Variable importances were com-
puted using two measures: %IncMSE, assessing the rise 
in MSE resulting from the removal of the variable; Inc-
NodePurity, quantifying the increase in residual sum of 
squares attributable to the exclusion of the variable.

Statistical analysis
Continuous variables were expressed as median (inter-
quartile range, IQR), and categorical variables as num-
ber, n (percentage, %). Correlation analyses employed the 
Spearman correlation coefficient, by the ggpubr package 
v0.6.0 in R. A p-value ≤ 0.05 was considered significant. 
Visualizations were generated using ggplot2 and plotmo 
libraries in R v4.3.

Results
Study population
A total of 497 PLWH within the SPID-HIV-Vax cohort 
met the inclusion criteria for the present study. The 
vaccination schedule and blood sample collection are 
reported in Fig.  1. Baseline characteristics of the study 
participants are reported in detail in Table  1. Briefly, 
median age was 54 (IQR: 44–59) years, and 408 (82.1%) 
were males. Median time from HIV diagnosis was 12 
(IQR: 7–22) years. Median CD4 T-cell nadir was 220 
(IQR: 81–370) cells/µL; current CD4 T-cell count was 
701 (IQR: 512–934) cells/µL with a median CD4/CD8 
ratio of 0.81 (IQR: 0.56–1.14). All participants have been 
on ART for a median of 9 (IQR: 5–15) years, and 483 

Fig. 1 Clinical study design. Blood samples were collected at each longitudinal time-point (T) from PLWH receiving multiple doses of mRNA 
SARS-CoV-2 vaccines. Number of available anti-S IgG samples are reported for each time-point. PLWH: people living with HIV; T0: day of the first 
dose; T1: 1 month after the first dose, coinciding with the day of the second dose; T2: 1 month after the second dose; T3: 6 months after the second 
dose, coinciding with the third dose administration; T4: 1 month after the third dose; T5: 6 months after the third dose; T6: 12 months after the third 
dose, coinciding with the fourth dose administration; T7: 1 month after the fourth dose; T8: 6 months after the fourth dose
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(97.18%) had undetectable plasma HIV-RNA. Thirty-
seven (7.44%) PLWH reported SARS-CoV-2 infection 
prior to vaccination.

Regression models selection
To develop a predictive model for the antibody con-
centrations at each sequential time point following the 
administration of SARS-CoV-2 vaccine, linear and non-
linear models were constructed as described above.

Generalized linear models
All three GLM models—derived from SF, SB and MM 
feature selection approaches—identified a positive rela-
tionship of antibody concentrations with the presence 
of a prior SARS-CoV-2 infection, previous AIDS events, 
and duration of ART, whilst a negative association with 
CD8 T-cell percentage (Additional file  1: Tables S1–
S3). Additionally, SF and SB models revealed a posi-
tive dependence of vaccine-elicited anti-S IgG on sex at 
birth (female) and heterosexual behavior, while a nega-
tive correlation with Caucasian ethnicity. Specifically, 
SF model also identified a negative association with time 
between primary and booster vaccination, as well as 
with HIV-RNA copies in plasma, while SB model found 
a significant positive dependence on BMI. Lastly, the 
MM inference approach uncovered a positive relation-
ship with BMI and a negative one with CD4 T-cell nadir. 
Overall, these three linear models showed a generally low 
cross-validated  R2 and elevated cross-validated RMSE 

Table 1 Demographic and HIV-related characteristics of PLWH 
at baseline

Characteristics PLWH
(n = 497)

Age, years, median (IQR) 54 (44–59)

Sex at birth, n (%)

 Male 408 (82.1)

 Female 89 (17.9)

Ethnicity, n (%)

 Caucasian 428 (86.12)

 Arab 9 (1.81)

 Latin 41 (8.25)

 African 6 (1.21)

 Asian 13 (2.61)

Epidemiology, n (%)

 MSM 254 (51.11)

 MSW/WSM 148 (29.79)

 Transgender 1 (0.2)

 IDU 71 (14.29)

 Vertical transmission 5 (1.01)

 Other/unknown 18 (3.6)

Comorbidities, n (%)

 None 279 (56.14)

 Hypertension 101 (20.32)

 Cardiovascular disease 52 (10.46)

 Cerebrovascular disease 20 (4.02)

 Chronic kidney disease 30 (6.05)

 COPD/Asthma 33 (6.64)

 Peptic ulcer 12 (2.41)

 Hemiplegy 9 (1.81)

 Previous leukemia/lymphoma 19 (3.82)

 Previous solid cancer 35 (3.82)

 Metastatic solid cancer 9 (1.81)

 Autoimmune diseases 48 (9.66)

 Neurologic disease 30 (6.05)

Charlson Comorbidity Index, median (IQR) 0 (0–1)

BMI, median (IQR) 24.62 (22.66–27.46)

BMI strata, n (%)

  < 18.5 19 (3.8)

 18.5–24.99 249 (50.1)

 25–29.9 174 (35)

  ≥ 30 55 (11.1)

Viro-immunologic parameters, median (IQR)

 CD4 T-cell nadir, cells/µL 220 (81–370)

 CD4 T-cell count, cells/µL 701 (512–934)

 CD4 T-cell percentage 32 (25–39)

 CD8 T-cell count, cells/µL 885 (640–1156)

 CD8 T-cell percentage 40 (33–47)

 CD4/CD8 ratio 0.81 (0.56–1.14)

CD4 T-cell count strata, n (%)

  < 200 cells/µL 20 (4.02)

200–500 cells/µL 95 (19.12)

IQR interquartile range, MSM men who have sex with men, MSW men who 
have sex with women, WSM women who have sex with men, IDU injective drug 
use, COPD chronic obstructive pulmonary disease, BMI body mass index, AIDS 
acquired immunodeficiency syndrome, INSTI integrase strand-transfer inhibitor, 
PI protease inhibitor, NNRTI non-nucleoside reverse transcriptase inhibitor

Table 1 (continued)

Characteristics PLWH
(n = 497)

  > 500 cells/µL 382 (76.86)

CD4/CD8 ratio ≥ 1, n (%) 174 (18.91)

Undetectable HIV-RNA (< 50 copies/mL), n (%) 483 (97.18)

Previous AIDS diagnosis, n (%) 150 (30.18)

Time from HIV diagnosis, years, median (IQR) 12 (7–22)

Current ART regimen, n (%)

 INSTI-based 361 (72.64)

 PI-based 34 (6.84)

 INSTI + PI-based 8 (1.61)

 NNRTI-based 94 (18.91)

Duration of ART, years, median (IQR) 9 (5–15)

Previous SARS-CoV-2 infection, n (%) 37 (7.44)

Time between prime and booster vaccination, days, 
median (IQR)

176 (162–190)
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indicative of suboptimal performances on the test dataset 
(Table 2). Consequently, a shift towards non-linear meth-
odologies was employed to capture the intricate relation-
ships among variables more accurately.

Non‑linear models
The Tree  Regression model exhibited enhanced per-
formances compared to its linear counterparts (CV-
R2 = 0.795, CV-RMSE = 0.451) (Table 2). The optimal tree 
configuration identified 12 variables, including previ-
ous SARS-CoV-2 infection, BMI, plasma HIV-RNA and 
HIV-related viro-immunological parameters (Additional 
file 1: Fig S1). Random Forest outperformed the preced-
ing methodologies in terms of both highest  R2 and lowest 
RMSE (CV-R2 = 0.845, CV-RMSE = 0.412) (Table 2), lead-
ing to its selection as the optimal model for subsequent 
analysis.

Antibody prediction through random forest regression
The selected Random  Forest regression approach iden-
tified, among 39 different clinical, demographic, and 
immunological factors, several variables as more influen-
tial in predicting the antibody response, such as demo-
graphic variables (age and Caucasian ethnicity), BMI, 
previous SARS-CoV-2 infection, the number of days 
between the second and third vaccine doses, HIV-related 
viro-immunological parameters, time since HIV infec-
tion acquisition, and duration of ART (Fig. 2A). The top 
5 variables, in terms of both %IncMSE and IncNodePu-
rity, in order of importance, were previous SARS-CoV-2 
infection, BMI, CD4 T-cell count, days between prime 
and booster vaccination, and CD4/CD8 ratio. To inves-
tigate the role of these variables in predicting the anti-
body response over time, the variable “days between 
prime and booster vaccination” was excluded since it 
could not impact time points preceding the third dose. 
The temporal influence of each of the selected 4 variables 
on the prediction of the antibody response within the 
Random Forest model was investigated using 3D partial 

dependence plots. The graphs were obtained by pairing 
each variable of interest with the temporal one, while set-
ting all other variables (background variables) to their 
median value (for continuous variables) or mode (for cat-
egorical variables) (Fig. 2B–E).

A pronounced dependence of the predicted anti-
body response was observed at earlier time points after 
the administration of the primary vaccine cycle for all 
selected variables. This dependence gradually diminished 
over time with the consequent administration of vaccine 
doses, culminating in a uniform humoral response for 
each value assumed by the examined variable. Specifi-
cally, a positive relationship was observed with the pres-
ence of a previous SARS-CoV-2 infection before vaccine 
administration (Fig. 2B), while reduced antibody concen-
trations were noted for lower values of BMI, CD4 T-cell 
count, and CD4/CD8 ratio (Fig. 2C–E).

In quantitative terms, the declining impact over time 
of the top 5 variables on the antibody response was cor-
roborated by a Spearman correlation analysis conducted 
across the entire study population at each time point 
(Additional file 1: Fig S2). Notably, similar trends to those 
highlighted by applying the Random  Forest model were 
observed, since the significance of the correlation showed 
a diminishing trend with the increasing number of vac-
cine doses received over time. This alignment between 
the correlation analysis and the Random  Forest model 
outcomes reinforces the temporal evolution of variables’ 
influence on the antibody response, emphasizing the con-
sistency of observations across analytical methodologies.

Discussion
In this study, we leveraged data from a longitudinal 
observational study to train and test different machine 
learning algorithms to develop a predictive model of 
immune responses to SARS-CoV-2 mRNA primary and 
booster vaccination in PLWH. The specific aims were to 
forecast vaccine-elicited humoral responses in this vul-
nerable population based on several demographic and 
clinical information that may be easily retrieved from 
electronic charts in clinical practice settings, and to 
simultaneously analyze the impact of these variables on 
antibody production over time.

We found that, while commonly used linear regres-
sion models show suboptimal performances, non-linear 
methodologies display a significantly better ability to 
capture the intricate relationships among variables. In 
particular, Random Forest regression resulted as the best 
performing algorithm in predicting vaccine-induced 
antibody response. This is likely attributable to the fact 
that the various feature selection strategies employed in 
linear models often lead to the exclusion of important 
variables that, when considered individually, may have 

Table 2 Linear and non-linear model performances

R2 (CV-R2) and Root Mean Squared Error (CV-RMSE) metrics have been computed 
on test set using a fivefold cross-validation approach

AIC Akaike Information Criterion obtained on the train set, BIC Bayesian 
Information Criterion computed on the train set

Name Model AIC BIC CV  R2 CV RMSE

Stepwise-forward glm 4047.2 4123.2 0.357 0.801

Stepwise-backward glm 4072.1 4169.8 0.358 0.801

glmulti glm 4079.9 4134.2 0.351 0.804

Tree regression rpart – – 0.795 0.451

Random forest randomForest – – 0.845 0.412



Page 6 of 9Montesi et al. Journal of Translational Medicine          (2024) 22:432 

a minor role, whereas in a multi-variable context they 
would assume a stronger predictive role [25, 26].

Notably, the key clinical factors influencing the vac-
cine humoral immunogenicity that were identified by the 
Random Forest model were: previous SARS-CoV-2 infec-
tion, CD4 T-cell count, CD4/CD8 ratio, BMI, and time 
between primary vaccination cycle and booster dose. In 
detail, SARS-CoV-2 infection before vaccine administra-
tion appeared to positively influence the vaccine-elicited 

antibody levels. By contrast, low CD4 T-cell counts, 
CD4/CD8 ratio and BMI values were associated with 
reduced antibody responses to the vaccine. Lastly, 
increasing time between primary vaccination cycle and 
booster dose was associated with higher antibody levels 
after the administration of booster doses. Remarkably, 
these key clinical factors, identified through the Ran-
dom  Forest machine learning approach, are congruent 
with clinical and laboratory observations [3, 9, 10, 12, 27, 

Fig. 2 Random Forest regression analysis. A Variable importance resulting from Random Forest model. Variable importances are expressed in terms 
of the rise in MSE resulting from the removal of the variable (namely %IncMSE, y-axis) and the increase in residual sum of squares attributable 
to the exclusion of the variable (namely IncNodePurity, sphere dimension). Top 5 selected important variables are marked with an asterisk (*). B–E 
Interaction between top important variables and time since first vaccine dose within the Random Forest model. 3D partial dependence plots 
are generated by plotting the predicted response [anti-S IgG expressed in binding antibody units per milliliter (BAU/mL)] on the z-axis as two 
variables are changed (all other variables held at their median/mode values). Numerical variables are normalized using z-score. Red arrows indicate 
the number of vaccine doses received. For each pair of parameters two different visualizations were obtained by rotating the plot around the z-axis 
with an angle of 80°. The interaction of time since first dose administration, reported on the x-axis, versus previous SARS-CoV-2 infection (B), BMI (C), 
CD4 T-cell count (D), and CD4/CD8 ratio (E). BMI body mass index, COPD chronic obstructive pulmonary disease, IDU injective drug use, MSM men 
who have sex with men, MSW men who have sex with women, WSM women who have sex with men, AIDS acquired immunodeficiency syndrome, 
ART  antiretroviral therapy, INSTI integrase strand-transfer inhibitor, PI protease inhibitor, NNRTI non-nucleoside reverse transcriptase inhibitor
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28]. This corroborates and supports the validity of our 
model, confirming it as an important tool for future pre-
diction studies. Indeed, hybrid immunity, derived from a 
combination of both natural infection and vaccination, 
has been shown to ensure immune protection which is 
higher in both magnitude and durability than that pro-
vided by either vaccine or infection alone [29]. Further-
more, poor immune recovery despite ART has been 
distinctly associated with reduced humoral and T-cell 
responses to SARS-CoV-2 vaccines in PLWH [3, 9–12]. 
Similarly to obese people, underweight ones develop 
weaker immune responses to SARS-CoV-2 vaccines [28], 
due to a severe impairment of the immune system [30]. 
Lastly, several studies demonstrated that an extended 
interval between SARS-CoV-2 mRNA vaccine doses 
results in stronger humoral responses [31–34], owing to 
a decline in antibody levels which limits the Fc-mediated 
clearance of vaccine-encoded antigens, thus allowing de 
novo priming of B cells [34].

In this context, our machine learning approach expands 
the knowledge of the modeling strategies to be employed 
in studies aiming to predict outcomes involving complex 
biological mechanisms. Indeed, we demonstrated that 
such associations are not linear and thus more nuanced 
than previously believed, due to the reciprocal inter-
actions between such factors in influencing vaccine-
induced humoral responses.

Additionally, while previous research mainly focused 
on the primary vaccine cycle, the present study extends 
the knowledge on immune responses to booster doses in 
this vulnerable population. In this respect, a reduction 
of the model dependence from the identified predictors 
over time was observed, revealing that while the afore-
mentioned factors may play a critical role in dictating 
humoral immunogenicity to the primary vaccine cycle 
in PLWH, the importance of their role significantly wane 
over time, so that antibody responses to booster shots are 
uniform across the entire population regardless demo-
graphic and clinical features.

Some limitations need to be acknowledged in this 
study. Firstly, the model herein presented was devel-
oped using data derived from individuals vaccinated 
with the Spikevax™ mRNA vaccine (Moderna), and 
thus may not directly translate to PLWH receiving 
other SARS-CoV-2 vaccines or heterologous vaccine 
combinations. Additionally, while previous SARS-
CoV-2 infection was recorded at baseline, data on 
breakthrough infections during the follow-up period 
were not available. Lastly, the sample size was relatively 
small, especially for latest time points. Expanding the 
scope of the investigation to encompass different vac-
cine platforms and heterologous prime-boost combina-
tions, alongside with data from other cohorts of PLWH 

and other fragile populations and vaccine antigens, will 
strengthen such findings, providing valuable insights 
for the design of future vaccination strategies.

Conclusions
This study showcases that machine learning algorithms 
capable of quantifying non-linear associations allow to 
accurately predict humoral responses to SARS-CoV-2 
mRNA primary and booster vaccination in PLWH 
by employing clinical, demographic and HIV-related 
variables commonly available in medical charts. While 
low CD4 T-cell counts, CD4/CD8 ratio and BMI are 
associated with poor immunogenicity of the primary 
vaccine cycle, the administration of additional doses 
overcome the negative influence of these factors, sug-
gesting that further booster doses should be offered to 
PLWH. Moreover, the application of this model in clini-
cal contexts holds potential promise for public health 
strategies, empowering clinicians to predict individual 
humoral responses to vaccination, simply using demo-
graphic and clinical information that may be easily 
retrieved in medical practice settings. As a result, our 
model not only contributes to a deeper understanding 
of vaccine responsiveness but also offers practical guid-
ance for implementing effective and targeted vaccina-
tion strategies in PLWH that can be particularly helpful 
for improving possible epidemic or pandemic vaccina-
tion policies.
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build the final optimal tree of the model. Variable importances, calculated 
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(binding antibody units per milliliter (BAU/mL)) at each time point (x-axis). 
 R2 values are expressed as colour gradient ranging from violet to yellow. 
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second dose; T3: 6 months after the second dose, coinciding with the 
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months after the fourth dose.
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