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Edge-based relative entropy as a sensitive @i

indicator of critical transitions in biological
systems
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Abstract

Background Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is impor-
tant but challenging to signal critical transitions in complex biosystems.

Methods In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose

a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks
that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression

in complex biological systems. Specifically, by combining gene—gene interaction (edge) information with the rela-
tive entropy, the ERE method converts gene expression values into network entropy values, quantifying the dynamic
change in a biomolecular network and indicating the qualitative shift in the system state.

Results The proposed method was validated using simulated data and real biological datasets of complex diseases.
The applications show that for certain diseases, the ERE method helps to reveal so-called “dark genes” that are non-
differentially expressed but with high ERE values and of essential importance in both gene regulation and prognosis.

Conclusions The proposed method effectively identified the critical transition states of complex diseases at the net-
work level. Our study not only identified the critical transition states of various cancers but also provided two types
of new prognostic biomarkers, positive and negative edge biomarkers, for further practical application. The method
in this study therefore has great potential in personalized disease diagnosis.

Keywords Critical transition of complex disease, Edge-based relative entropy, Direct interaction networks, Edge-
biomarker, Dynamic systems, Informational entropy

Introduction

Evidence shows that during the progression of
heterogeneous complex disorders, such as various
cancer diseases [1, 2], diabetes [3], and epilepsy [4],
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file 1: Fig. S1). Specifically, during a complex disease
course, the before-transition state is characterized as a
stage with high stability and resilience. The critical state
represents the bound of the before-transition state. It
is usually reversible and could return to the before-
transition state under proper medical interventions,
implying the instability of this state [7]; nevertheless,
the after-transition state, such as the stage of distant
metastasis for cancer, is another steady state with strong
irreversibility and resilience after acute deterioration
[8]. To achieve the very goal of active prevention, early
warning signals should be detected prior to acute
disease aggravation; that is, the identification of the
critical state throughout the disease course is of crucial
importance in predictive and personalized medicine.
However, for many complex disorders, it is extremely
difficult to identify such a key transition due to few
phenotypic distinctions between the before-transition
state and the pre-transition state and a lack of effective
universal disease models [9].

Great efforts have been devoted to discovering
biomarkers for better diagnosing the after-transition
state. Based on the differential expression of genes/
nodes, many important molecular biomarkers with
consistently high/low expression in the deteriorated
state, such as BRCAI and TP53, were found to be
effective in indicating the development of breast
cancer and lung cancer [10, 11]. However, the onset of
complex diseases usually arises from the dysregulation
of signaling functions and/or the cell’s response to
its microenvironment, which are driven by dynamic
changes in complex interactions among many
molecules or molecular modules rather than individual
molecules [12]. In fact, intermolecular interactions,
considered the edges of biological networks, constitute
the foundation of and facilitate biological functions
and signal transmission [13]. Hence, it is important
and necessary to explore the dynamic change in
biomolecular interactions of biological systems, thus
identifying the tipping points or critical transitions
in complex diseases by providing a comprehensive
understanding of the biomolecular network. In
addition, some studies suggest that subtle changes in
some non-differentially expressed genes (non-DEGs)
can also have significant biochemical consequences,
thereby playing an important role in various biological
functions [14, 15]. Thus, methods based on networks
that explore differential intermolecular interactions/
edges rather than differential expression/nodes may
better characterize the development of complex
diseases before catastrophic deterioration [16]. Edge
biomarkers, as a type of promising network biomarker,
may reveal the underlying mechanism of dynamic
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changes in molecular associations or regulatory
relationships and provide a comprehensive perspective
for understanding complex disease pathogenesis from a
network standpoint.

In this study, we propose a model-free method based
on edge-based relative entropy (ERE) to identify early
warning signals of disease deterioration (Fig. 1). The
ERE method is theoretically based on the framework
of dynamic network biomarkers [17]. By considering
the combination of intergenic associations and assign-
ing samples accordingly (Fig. 1A), the ERE method con-
structs a vector form of edge-based relative entropy
values that can be viewed as the “edge feature” to rep-
resent the interaction information between each pair
of variables/nodes (Fig. 1B), which can be employed to
measure the similarity between probability distributions
of the corresponding two genes in high-dimensional non-
linear biosystems. In this way, ERE transforms the gene
expression matrix (with only node information) into an
entropy matrix (with information on gene associations
and networks) and offers a quantitative way to identify
whether the to-be-tested/case samples are derived from
a critical state. Therefore, those pairs of molecules (or
edges) can be identified from molecular interactions with
high ERE values (Fig. 1C), thus serving as edge biomark-
ers that help to signal the critical transition in biological
processes (Fig. 1D). Furthermore, these edge biomark-
ers can be categorized into two types according to cor-
responding disease outcomes, such as the prognosis of
patients, that is, positive/negative edge biomarkers indi-
cating good/poor prognosis. Moreover, it is possible to
uncover some “dark genes” that are non-differential at
the expression level but the components of important
gene interactions involved in key biological functions.
Compared to the other algorithms representing the edge
information using linear methods [18], e.g., Pearson cor-
relation coefficient (PCC), the ERE method elucidates
the sample-specific nonlinear relationship between a
pair of molecules/genes, which optimizes the identifica-
tion ability with strong robustness. Clearly, the proposed
ERE method is of high applicability and can be utilized
with any molecular network structure. To demonstrate
the validity of the proposed method, the ERE method
was applied to a simulated dataset and six real datasets,
including colon adenocarcinoma (COAD), lung adeno-
carcinoma (LUAD), thyroid adenocarcinoma (THCA),
kidney renal clear cell carcinoma (KIRC) and kidney
renal papillary cell carcinoma (KIRP) datasets from The
Cancer Genome Atlas (TCGA) database and an acute
lung injury dataset (GSE2565) from the Gene Expres-
sion Omnibus (GEQO) database. The critical states ahead
of severe clinical deterioration were discriminated in the
different stages of tumors. The identified critical states
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Fig. 1 Schematic diagram of the edge-based relative entropy (ERE) method. A Given reference samples from a relatively healthy cohort and case
samples to be tested, the probability corresponding to the expression of each gene in an individual sample under the two conditions is calculated
separately using kernel density estimation (KDE). The entropy matrix is then obtained. B Matrices regarding node and edge features. C During

the progression of complex diseases, ERE can effectively distinguish the before-transition and pre-transition states at the network level and identify
some edge biomarkers for prognosis analysis. D The significant change in ERE may indicate a critical state of a complex disease
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were all coincident with experimental observations or
survival analysis. Some of the edge biomarkers were also
verified by a series of functional enrichment analyses and
prognosis analyses. In summary, the ERE method may
provide a reference computational method and quantita-
tive indicator for biomedical studies, and positive/nega-
tive edge biomarkers identified based on this method
may be clinical early warning signs for diseases.

Materials and methods

The ERE algorithm

Given m reference samples from a comparatively healthy
cohort that represent individuals in a healthy (relatively
healthy) state and #n case samples to be tested, we
identify the critical state by carrying out the following
procedures:

1. Mapping of the gene expression to the network
structure. For gene g;, denote the expression values
in the reference set as (x;1,%i2,...,Xi;) and the
expression values of case samples as (¥1, ¥i2, - Yin)-

2. Fitting of probability vectors for each gene/node,
which was based on the reference and case samples
(Fig. 1A). Specifically, for a gene g;, the probability
pr(ij) is calculated based on the reference samples
(%41, %425 ..oy Xisy) as follows:

Jn (i)
jmzlfh ()

Here, the probability density estimator f;(z) is
defined as

Prxig) = k=12,...,m.

1 N 1 N zZ—Zr
fh(z):N;Kh(Z_Zk)ZA[th< ; >,

1)
where K denotes a nonnegative (aussian kernel
function, and bandwidth /# = (% * > 0 denotes a
smoothing parameter with o as the standard
deviation of samples and N as the number of samples
(see Additional file 1: Note S1 for details). Note that
KDE excels at estimating unknown distributions
from empirical data, accommodating irregular
structures without the need for understanding
underlying processes. But the values of bandwidths
in KDE are calculated from the observed data
reflecting the true state of the system. Therefore, we
only focus on the sampled points when calculating
the ERE values. Clearly, vector
Py = (pr(xi1), pr(Xi2), s Pr Kim)) satisfies
Zj’ilp, (xij) =1, and p, (xi/) > 0. Similarly, the
probability vector P, = (p. (yﬂ),pc (yig), v De (yi,,))
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can be calculated based on the case samples
Vi1, Yi2s ++s Yin)» With

o )
pe(yix) = A L2,...,n

3. Calculation of the ERE value of each case sample by
using the edges in the protein—protein interaction
(PPI) network. Specifically, for a pair of associated
genes g;and g; in the k th case sample,

r(n)
Hiin (%1, y0) =py (xi1)]
(j.) (x] ylk) -Pr (le) ngc (yik)

pr(%2)

pe(Vix)

r(%m)

Pc (yik) ’ (2)

+ pr (sz) log

+ -+ pr(%jm)log

where  yj  represents the expression val-
ues of g; in the k th case samples. In general,
H iy (%, yj) # Hyiy (%), yix). In this study, we use
the following symmetric measure:

1K (1)) = o2 (%6 k) ;Ho:t) (x0m) 3
which indicates the local ERE value calculated from
the gene pair g; and gj for the k th case sample. For
the k th case sample, we calculate the sample-specific
ERE value H¥ according to a crowd of gene pairs with
the highest ERE values, i.e., H* = 3 2 (ij)es H*(,j),
where (i, j) represents the gene pair g; and gj, S is the
high-ERE value (top 5% by default) gene pair set in
the k th case sample and constant M is set as the size
of § for this study.

At each time point £, the ERE value H(¢) is
calculated based on the above procedures, with
H(t) = ﬁZi\g? HK(¢), where N(¢) represents the
case sample size at time point t. The effective signal
is identified through the one-sample ¢-test, which is
presented in Additional file 1: Note S3. Specially, when
t = 2, the time point T = ¢ is considered a critical point
if H(t) is significantly different from the mean of vector
(H(1),H(3)).

Data processing and functional analysis

ERE was applied to six sets of gene expression data, i.e.,
the cancer datasets of COAD, LUAD, THCA, KIRC
and KIRP from the TCGA database and the time-
course dataset of acute lung injury (GSE2565) from
the NCBI GEO database. Concerning the microarray
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data (GSE2565), we only reserved the probes with
corresponding gene symbols and employed the mean
value of multiple probes for the same gene as the
expression level of the mapped gene. Each of the cancer
datasets includes tumor-adjacent and tumor samples.
The tumor-adjacent samples were utilized as reference
samples. The tumor or case samples were screened and
partitioned according to the corresponding clinical
information (Table 1).

The pathway enrichment analysis was carried out
through the clusterProfiler package [19] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://
www.genome.jp/kegg/). Survival analysis was carried
out on the basis of Kaplan—Meier log-rank analysis. The
PPI networks of Homo sapiens and Mus musculus were
constructed based on information from the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING,
http://string-db.org).

Results

The definition of the ERE value and its algorithm are
presented in the Methods section. To demonstrate the
effectiveness of ERE, it was tested on a simulated sixteen-
node dataset (see Additional file 1: Notes S2 and S9 for
details) and applied in six real datasets, including acute
lung injury (GSE2565) from the GEO database and
COAD, LUAD, THCA, KIRC and KIRP from the TCGA
database. The successful identification of the critical
state in the complex disease progression verified the
applicability of our method in quantitatively identifying
the tipping point ahead of irreversible deterioration of
health. In this process, some edges with high entropy
in the critical state were selected as signaling edges for
in-depth analysis.

Identifying the critical transition in acute lung injury

ERE was applied to the microarray gene expression
data of mice obtained from an experiment of phosgene-
induced acute lung injury [20]. The control and case sam-
ples were generated by exposing two sets of mice to air or
phosgene, respectively. Subsequently, lung tissues from
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air- or phosgene-exposed mice were collected at 0.5, 1, 4,
8, 12, 24, 48, and 72 h. It was found that a 50-60% death
rate in the case group was observed after 12 h, while there
was a 60—70% mortality rate after 24 h. Notably, the most
deadly acute lung injury caused by phosgene occurred
approximately 12 h after exposure [20]. For the case
group, the ERE value sharply increased from 4 to 8 h after
exposure (Fig. 2A), implying a correspondence between
the critical state and the 4-h time window from 4 to 8 h,
with the system entering the after-transition state after
the 8-h point. However, the average normalized expres-
sion of differentially expressed genes (DEGs) fails to sig-
nal the forthcoming system state transition (Fig. 2A). The
computational results agree with the experimental obser-
vations, suggesting the effectiveness of the ERE method
in the biological experiment. More details describing the
variability of the ERE value at each time point and the
expression calculation of DEGs are provided in Addi-
tional file 1: Fig. S19 and Note S10.

Identifying the critical states for various cancers

Then, ERE was applied to five TCGA datasets: COAD,
LUAD, THCA, KIRC and KIRP (Additional file 1: Fig.
S2). Implementing the procedure in the Materials and
Methods, we obtained the ERE value for each individual
tumor sample. Then, the average ERE value at every stage
was calculated and visualized for the identification of the
critical state (Fig. 3).

By applying the proposed method, the significant
increase in the ERE value identified the critical states
for four common cancers, ie., stage IIB (P = 0.0022)
for COAD (Fig. 3A), stage IIIB (P = 0.0009) for LUAD
(Fig. 3C), stage II (P = 0.0196) for THCA (Fig. 3E), and
stage II (P = 0.0316) for KIRC (Fig. 3G). Clearly, the
mean expression of DEGs and traditional gene biomark-
ers (Additional file 1: Table S1 and Fig. S11) cannot indi-
cate such critical transitions. The heat maps of local ERE
values for the four cancers (Fig. 3B, D, F, H) illustrate that
the local ERE values of signaling edges increase drasti-
cally in a collective manner at the identified critical states
during disease progression. The computational results

Table 1 The number of samples in each tumor stage in each TCGA dataset

Types of cancer TA samples Stage | Stagelll Stage lll Stage IV
Stage IA Stage IB Stage llA Stage IIB Stage llIA Stage llIB Stage llIC

COAD 42 72 154 1 28 55 37 62

LUAD 59 162 29 39 51 7 0 19

THCA 58 268 52 109 53

KIRC 72 199 39 63 51

KIRP 32 160 19 45 14

TA samples: tumor-adjacent samples
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are consistent with the clinical observations. Specifically,
at the identified critical state (stage IIB) of COAD, the
cancer has not yet metastasized, whereas at stage IIIA, it
has already spread to the nearby lymph nodes [21]. At the
identified critical state of LUAD (stage IIIB), the metas-
tasis of cancer has not occurred, whereas cancer cells
enter distant tissues or organs through the bloodstream
at stage IV [22]. For THCA, metastasis has not occurred
yet at the identified critical state (stage II); neverthe-
less, regional lymph node metastasis occurs at stage III
[23]. For KIRC, the tumor is noninvasive at the identified

critical state (stage II), whereas at stage III, tumor cells
spread to surrounding tissues [24]. Additional file 1: Fig.
S11 B, D, F, and H show that the survival expectancy is
much higher before the identified critical state than after-
ward. Moreover, the prognosis analysis also supports the
computational results based on ERE. For example, the
difference in survival expectancy before and after the
identified critical state of THCA, i.e., stage II, is the most
significant (P < 0.0001) compared with the prognosis
analysis based on other stage divisions (see Additional
file 1: Fig. S13 for details of the prognosis analysis).
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In addition, the PPI network composed of high-ERE
value gene pairs (top 5% in the critical stage) helps us
understand the dynamic changes in the ERE signal-
ing edges at a network level. Drastic changes in the PPI

networks occurred at stage IIB of COAD (Fig. 4A), stage
IIIB of LUAD (Fig. 4B), stage II of THCA (Fig. 4C), and
stage II of KIRC (Fig. 4D), suggesting the following cata-
strophic deterioration for each disease. Notably, there are
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some essential cancer-related hub genes captured in the
above network, such as GATA4, which is well known for
its antitumor function in COAD [25]. More details for
the networks in each cancer are provided in Additional
file 1: Table S3 and Fig. S12.

Positive and negative edge biomarkers

Based on the clinical information, the samples were clas-
sified into a long-survival group (with a long survival
expectancy, i.e., more than 5 years) and a short-survival
group (with a short survival expectancy, ie., less than
5 years). If an edge presented a high ERE value in over
80% of samples of the long-survival/short-survival group,
it was defined as a positive/negative edge biomarker, as
shown in Fig. 5A-F for three positive/negative edge bio-
markers. These edge biomarkers quantitatively identify
the critical states during disease progression as signal-
ing gene pairs and are also effective for analyzing the
prognosis of cancer. Taking LUAD as an example, the
survival expectancy of patients with high ERE values for
the positive edge biomarker ADHIC-GSTM1 was sig-
nificantly longer (P = 0.0068) than that of patients with
low ERE values for the biomarker (Fig. 5B). Furthermore,
edge biomarkers may exert important regulatory effects
on disease progression from the perspective of cancer-
related signaling pathways. For example, EGFR-MYC and

>
o]

Positive edge biomarker
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EGFR-RACI were identified as negative edge biomarkers
for LUAD. By KEGG pathway enrichment analysis, they
were found to be enriched in the MAPK signaling path-
way, which is an essential signaling cascade in the growth
and development of tumor cells [26]. More details about
the edge biomarkers for the four cancers are shown in
Additional file 1: Table S4, Fig. S8 and Note S4.

Revealing non-differentially expressed “dark genes”

and potential signaling mechanisms via the ERE method
The ERE-based analysis suggests that some non-DEGs may
be regarded as “dark genes” and exert important functions
in disease progression and prognosis analysis (Table 2). For
example, DKKI was non-differentially expressed but could
distinguish the prognosis of LUAD patients as the compo-
nent of an edge (DKKI-FZDI) based on the ERE method.
The results of KEGG enrichment analysis illustrated that
these “dark genes” were closely related to cancer develop-
ment (Additional file 1: Table S2).

Tumor progression is a process of dysfunctional
changes [27]. To further explore the functional relevance
of signaling gene pairs and tumor progression, we per-
formed pathway enrichment analysis for signaling gene
pairs. As illustrated in Fig. 6A and B, the gene pairs
were mainly enriched in some classic cancer-relevant
pathways, such as the TGF-p and JAK-STAT signaling
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Fig. 5 Survival analysis based on positive and negative edge biomarkers. A-C The survival expectancy of patients with high ERE values for positive
edge biomarkers is significantly longer than those with low ERE values for the biomarkers. D-F The survival expectancy of patients with high ERE
values for negative edge biomarkers is significantly shorter than those with low ERE values for the biomarkers
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Table 2 Dark genes as components of edge biomarkers in LUAD and KIRC

Gene  Associated Type Location Family Relation with tumors
edge
biomarker
DKK1 DKKI1-FZD1 Negative Extracellular Other DKK1 guides epithelial-mesenchymal transition and promotes non—
small cell lung cancer (NSCLC) invasion and metastasis [30]
MYC DKK1-MYC Negative Nucleus Transcription factor  MYC functions as a metastasis promoter for NSCLC [31]
WNTT  DKKI1-WNTT Negative Plasma membrane Other WNTT is closely related to tumor proliferation and angiogenesis
in NSCLC [32]
GAPDH  GAPDH-MYC Negative Cytosol Enzyme GAPDH is related to the proliferation and migration of lung cancer [33]
GNG4  GNBI-GNG4 Negative Plasma membrane Other GNG4 may promote the proliferation and metastasis of cancer cells
by affecting their EMT progression [34]
EGFR  EGFR-MYC Negative Endosome Protein kinase EGFR mutations usually result in tumor cellular proliferation in lung
cancer [35]
FOSLT  FOSL1-MYC Negative Nucleus Transcription factor  FOSL1 likely exerts essential functions in tumor growth and metastasis
[36]
NOG BMP7-NOG Negative Extracellular Other NOG may inhibit tumor- suppressing properties of the BMPs and cause

tumorigenesis [37]

pathways, for COAD and THCA, respectively (see Addi-
tional file 1: Table S2 for details). These pathways are
involved in cell proliferation and migration, angiogenesis,
immune changes and metastasis in tumor progression
[28, 29].

To further investigate how signaling genes affect
alterations in gene expression before and after the pre-
transition state in the PI3K-Akt signaling pathway, the
underlying molecular mechanism was unraveled based
on the functional analysis of the COAD signaling gene
pairs, as shown in Fig. 6C. In stage IIA and earlier stages,
tumor cells were disordered and might have prompted
critical transitions by cytokines (signaling genes), such
as IL6, CSF3 and OSM, in the microenvironment. After
the critical stage (stage IIB), signaling receptor genes
(IL4R) were highly expressed, which might have triggered
the phosphorylation of PI3K and AKT proteins and
further upregulated the expression of the apoptosis
inhibitor BCL2L1 and enhanced tumor cell growth and
proliferation. Overall, ERE signaling gene pairs affected
the PIBK/AKT signaling pathway in tumor progression
and were involved in many cancer-related pathways (for
details, see Additional file 1: Fig. S7 and Notes S6 and S7).

Discussion

Early diagnosis is helpful to prevent the development of
severe disease. Therefore, it is of vital importance to detect
early warning signals before catastrophic deterioration.
Nevertheless, disease progression usually results from
dynamic changes in complex interactions among many
molecules rather than individual molecules. The short-
comings of conventional node-based methods are becom-
ing apparent when they differentiate the critical state from
the before-transition state due to their static nature, where

molecules exhibit limited expression changes from the
before-transition state to the critical state. The previous
DNB method, which is based on genes/nodes and neglects
edges/gene—gene associations or network structure,
employs the fluctuation (i.e., the standard deviation) and
covariance of samples to identify the tipping point of the
disease process (see Additional file 1: Note S8 for details).
In addition, the DNB method necessitates a balanced num-
ber of control group samples and case group samples at
each time point, which proves to be exceedingly challeng-
ing to achieve in practical biomedicine. In this study, from
a network analysis standpoint, we propose a computational
method to quantify the dynamic changes in the coopera-
tive effects of biomolecular interactions, thus effectively
signaling the tipping points during disease progression. The
proposed ERE method is different from the previous DNB
method in the following two aspects. First, our approach
detects critical points by calculating a composite ERE value
based on the structure of biomolecular networks (such
as the PPI network), aligning more closely with the basic
principles of systems biology. Second, the ERE method
only necessitates a reference sample set. The unbalanced
number of reference group samples and case group sam-
ples (which aligns with realistic scenarios) does not impact
the calculation. Based on the ERE method, we successfully
identified the critical states in six complex disorders, which
were validated according to clinical information or related
literature (see Additional file 1: Note S5 for details). Moreo-
ver, the edge biomarkers screened from ERE signaling gene
pairs can be classified into two categories depending on the
outcomes, such as the prognostic survival time of patients,
i.e., positive and negative edge biomarkers. According to
Kaplan—-Meier survival analysis, we found these edge bio-
markers to be statistically significant, including some gene
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The enriched KEGG pathways related to THCA
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Fig. 6 The regulatory mechanism of cancer development revealed by ERE signaling gene pairs. KEGG pathway enrichment analysis for the ERE
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by upstream ERE signaling gene pairs in COAD. Cytokines are coded by /L6, CSF3, and OSM, which correspond to signaling gene pairs after mapping

into the PPl network

pairs among which there is indeed a biological regula-
tory relationship that can affect the survival and health
of the patient. Moreover, our study shows that gene pairs
with differential ERE values clearly indicate a shift in bio-
logical states despite non-differential expression of the
involved genes. In addition, compared to other methods
(including a node-based method and the direct interac-
tion network-based divergence (DIND) method [38]),
which focus on individual molecules or local biomolecu-
lar direct interaction networks, the ERE method can iden-
tify the critical state by exploring differential associations

among molecules, providing a systematic and dynamic
way to decipher the biological system responding to drug
or therapy treatment [39]. Furthermore, as shown in Addi-
tional file 1: Fig. S6 and Fig. S20, ERE is effective in identify-
ing the critical points of the simulated data under different
noise strengths and groups of edges with highest ERE val-
ues, validating the robustness of ERE. To further assess the
applied issue of ERE, we have discussed the applicability
scenarios and optimal selection of edges for our method.
Additionally, we compared the ERE method with pure
physical approaches [40, 41] to emphasize its efficiency in
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identifying critical points in the disease progression. We
also analyzed the relationship between ERE and informa-
tional entropy as well as thermodynamic entropy [42], to
help the scientific understanding of the proposed method
and results. Further details can be found in Additional
file 1: Note S11. However, the reliance on reference samples
and the inability to directly apply the algorithm on the indi-
vidual sample to be tested constitute limitations of the ERE
method.

Conclusions

In summary, the proposed approach functions as a
reliable computing tool with the following advantages.
First, in contrast to the common node-based methods,
the ERE method is more sensitive to early-warning
signals with strong robustness against sample number
and noise. Second, the ERE strategy represents a
promising way to signal the critical transitions in
complex diseases from a gene-pair perspective, which
is helpful to track the dynamic changes of cooperative
effects on molecular associations. Third, as a model-
free computational method, the ERE method does
not require model training procedure, differing from
conventional classification or machine learning methods
requiring massive numbers of samples for supervised
or unsupervised learning. Combined with the dynamic
prediction method [43] or the statistic-based analysis
method [44], the ERE method may help to reveal the
dynamic change in molecular associations and networks
in a complex biological system near its bifurcation point.
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