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Abstract 

Background  Gastric cancer (GC) is a common and aggressive type of cancer worldwide. Despite recent advance-
ments in its treatment, the prognosis for patients with GC remains poor. Understanding the mechanisms of cell death 
in GC, particularly those related to mitochondrial function, is crucial for its development and progression. However, 
more research is needed to investigate the significance of the interaction between mitochondrial function and GC 
cell death.

Methods  We employed a robust computational framework to investigate the role of mitochondria-associated 
proteins in the progression of GC in a cohort of 1,199 GC patients. Ten machine learning algorithms were utilized 
and combined into 101 unique combinations. Ultimately, we developed a Mitochondrial-related-Score (MitoScore) 
using the machine learning model that exhibited the best performance. We observed the upregulation of LEMT2 
and further explored its function in tumor progression. Mitochondrial functions were assessed by measuring mito-
chondrial ATP, mitochondrial membrane potential, and levels of lactate, pyruvate, and glucose.

Results  MitoScore showed significant correlations with GC immune and metabolic functions. The higher MitoScore 
subgroup exhibited enriched metabolic pathways and higher immune activity. Overexpression of LETM2 (leucine 
zipper and EF-hand containing transmembrane protein 2) significantly enhanced tumor proliferation and metastasis. 
LETM2 plays a role in promoting GC cell proliferation by activating the mTOR pathway, maintaining mitochondrial 
homeostasis, and promoting glycolysis.

Conclusion  The powerful machine learning framework highlights the significant potential of MitoScore in provid-
ing valuable insights and accurate assessments for individuals with GC. This study also enhances our understanding 
of LETM2 as an oncogene signature in GC. LETM2 may promote tumor progression by maintaining mitochondrial 
health and activating glycolysis, offering potential targets for diagnosis, treatment, and prognosis of GC.
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Introduction
GC is the fifth most common cancer worldwide and the 
third leading cause of cancer-related deaths [1, 2] Par-
ticularly in China, GC is one of the most prevalent malig-
nancies, with a high number of new cases and deaths 
reported [3]. Conventional treatments for GC, such as 
surgery and chemotherapy, are often ineffective due to 
frequent recurrence and metastasis, which results in 
poor prognosis [4, 5]. Metastasis, including peritoneal 
metastasis, lymph node metastasis, and distant metas-
tasis, significantly contributes to the poor prognosis of 
GC patients [6]. Therefore, it is crucial to understand the 
molecular mechanisms driving GC progression.

Mitochondria, known as the “cellular power plants”, 
play a central role in cellular metabolism, including 
the tricarboxylic acid (TCA) cycle, fatty acid oxida-
tion (FAO), electron transport chain (ETC), and oxida-
tive phosphorylation (OXPHOS), which are involved 
in energy production and catabolism of biomolecules. 
Mitochondria also provide precursors for various bio-
molecules and adapt to different metabolic conditions 
by modulating key gene transcription [7]. Mitochon-
drial dysfunction is closely associated with various dis-
eases, including cancer development and progression [8]. 
Therefore, investigating mitochondrial abnormalities and 
their roles in tumor cells may contribute to the develop-
ment of novel and effective cancer therapies [9].

The role of mitochondria in the development of gastric 
cancer is increasingly emphasized. Studies have shown 
that mt-DNA mutations in gastric cancer may activate 
excessive DNA repair mechanisms, which not only alter 
the function of mt-DNA and its encoding genes but also 
that these mutations contribute to gastric cancer typ-
ing. This is clinically significant as it is expected to not 
only facilitate early screening and improved therapeutic 
management of patients but also aid in the discovery and 
application of precise molecular markers [10, 11]. Within 
the field of gastric cancer therapy, targeting strategies 
against mitochondria have shown significant clinical 
potential. For example, by targeting pyruvate dehydro-
genase kinase 1 (PDK1), the PI3K/AKT/mTOR signaling 
pathway can be effectively inhibited, thereby inducing 
mitochondria-dependent apoptotic mechanisms and 
providing a new strategy for gastric cancer treatment 
[12]. Some researchers have also revealed how down-
regulation of NDUFS1, the largest subunit of ubiquinone 
oxidoreductase (complex 1) in the mitochondrial electron 
transport chain, promotes malignant progression of gas-
tric cancer by activating the mROS-HIF1α-FBLN5 sign-
aling pathway, emphasizing the critical role of targeting 
the mitochondrial components in gastric cancer therapy 
[13]. In summary, maintaining cellular and organismal 
homeostasis by regulating mitochondrial dynamics not 

only provides new perspectives for the prevention and 
treatment of gastric cancer but also the strategy of tar-
geting mitochondrial dynamics is expected to become 
an effective approach for gastric cancer treatment as the 
research in this field progresses. Although this area of 
research is still in its preliminary stage, the establishment 
of a prognostic model for gastric cancer associated with 
mitochondrial changes is important for optimizing thera-
peutic regimens and improving patient survival. There-
fore, further in-depth studies exploring the relationship 
between mitochondria and gastric cancer can not only 
reveal the pathogenesis of gastric cancer but also provide 
a theoretical foundation and experimental basis for the 
development of novel therapeutic strategies.

LETM2 is a recently discovered protein-coding gene 
predicted to be located in the inner mitochondrial mem-
brane and predominantly expressed in the testis and 
spermatozoa. Both LETM1 and LETM2 belong to the 
SLC55 family of proteins, which act as mitochondrial 
cations and proton exchangers [14]. LETM1 is associated 
with poor prognosis in various malignant tumors [15, 
16], whereas the biological role and mechanism of action 
of LETM2 in cancer remain poorly understood. LETM2 
is located near the Wolfe-Congenital Megacolon Syn-
drome Candidate Gene-1 (WHSC1L1), which has been 
linked to Wolfe-Congenital Megacolon Syndrome, a rare 
inherited disorder characterized by intellectual disabil-
ity, developmental delay, motor retardation, and epilepsy 
[17]. Zhou et al. demonstrated that the LETM2 regulated 
the PI3K-Akt signaling axis, which exhibited prognostic 
and therapeutic implications in pancreatic cancer [18]. 
However, there are no studies investigating the expres-
sion of LETM2 in GC and its functional roles. Hence, it is 
crucial to unravel the molecular mechanisms and develop 
a dependable classification model to evaluate prognosis 
and guide personalized treatment for individuals with 
gastric cancer (GC). This requires extensive research to 
understand GC progression and identify strong biomark-
ers that can accurately characterize patients and guide 
targeted therapies. By doing so, we can improve treat-
ment outcomes and enhance overall patient care for GC. 
Through in-depth analysis of The Cancer Genome Atlas 
(TCGA) database, our study revealed that in gastric can-
cer tissues, the expression of LETM2 was significantly 
increased compared with that in normal tissues adja-
cent to the cancer. LETM2 expression was significantly 
increased in gastric cancer tissues compared to normal 
tissues adjacent to the cancer. Furthermore, we observed 
that in gastric cancer patients, the low-expression group 
of LETM2 showed a more optimistic prognosis compared 
to the high-expression group. This finding highlights the 
potential role of LETM2 in gastric cancer, not only as a 
key molecular marker for gastric cancer development 
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but also as an important biomarker for predicting patient 
prognosis.

The mTOR signaling pathway plays a crucial role in cell 
growth, metabolism, and disease. Dysregulation of the 
mTOR pathway has been implicated in various diseases, 
including cancer, cardiovascular disease, and diabetes 
[19]. Several mTOR inhibitors, such as temsirolimus, 
everolimus, and lidamox, have been developed in clini-
cal trials [20]. However, the limitations of efficacy and 
adverse effects restricted its clinical application. There-
fore, there is an urgent need to develop combination 
or targeted therapies to expand the treatment options 
in the mTOR signaling pathway. The mTOR/Akt axis 
maintains energy balance through energy-generating 
activities, such as the Warburg effect, to meet the prolif-
erative demands of GC cells. Glucose, as the main source 
of cellular energy, is taken up by cancer cells, leading to 
increased glycolytic flux and sustained growth and prolif-
eration [21] to support the highly proliferative properties 
of GC cells.

Herein, we introduced a novel metric model MitoScore 
to forecast the efficacy and prognosis of therapeu-
tic interventions in GC. Through our investigation, we 
discovered the heterogeneity among multi-cohort GC 
patients and evaluated their clinical outlook. Further-
more, LETM1 is an essential mechano-mediator that 
reprograms GC cell metabolism. We explored the clini-
cal value and molecular mechanism of LETM2 in GC 
progression, which may serve as a potential therapeutic 
target in cancer management. We demonstrated that 
LETM2 promotes tumor progression by activating the 
mTOR pathway, thereby inducing mitochondrial home-
ostasis and facilitating glycolysis, ultimately leading to 
accelerated proliferation of GC cells.

Materials and methods
Data collection
The RNA-sequencing data and clinical information of 
GC patients were obtained from the TCGA (The Can-
cer Genome Atlas) database (https://​portal.​gdc.​cancer.​
gov) and the GEO (Gene Expression Omnibus) dataset. A 
total of 1467 samples were included in the analysis, with 
375 samples from TCGA-GC and 172 samples from the 
1092 GEO dataset (GSE84437, GSE15459, GSE26899, 
GSE26901). Differentially expressed genes (DEG) were 
performed by using a limma package. Adjusted P-values 
(adjP) < 0.05 and fold change (FC) > 1 were considered to 
be significantly differentially expressed genes.

We focused on mitochondria-related genes by 
extracting a list of 1136 genes from the comprehensive 
mitochondrial gene database, MitoCarta 3.0 (https://​
www.​broad​insti​tute.​org/​mitoc​arta/). Genes that were 
not present in the TCGA or GEO databases were 

excluded from our analysis. Please refer to Additional 
file  14: Table  S1 for the specific gene list. We com-
bined mRNA datasets and conducted a comprehensive 
screening process. We used the “Venn” tool to visually 
represent the overlap between DEGs associated with 
mitochondrial function and GC prognosis.

Construction of MitoScore signature
To construct the MitoScore Signature, we used the 
NMF (Non-negative matrix factorization) algorithm 
to analyze the sectionalization of tumor samples based 
on the expression levels of 12 mitochondrial key genes 
via the NMF package. Furthermore, we integrated ten 
diverse machine learning algorithms and evaluated 
101 algorithmic combinations [22, 23], including Sup-
port Vector Machine (SVM), Least Absolute Shrink-
age and Selection Operator (Lasso), Gradient Boosting 
Machine (GBM), Random Forest, Elastic Net, Step-
wise Cox, Ridge, CoxBoost, Super Partial Correlation 
(SuperPC), and Partial Least Squares with Cox regres-
sion (plsRcox). We developed a sequential approach 
that involved identifying the best prognostic variables 
using univariate Cox regression modeling. These algo-
rithms were applied in the total TCGA GC cohort and 
verified in both the training and testing cohorts at the 
ratio of 3 to 7, and the best-performing model was con-
structed. This model was validated by both internal and 
external datasets.

Each patient’s MitoScore was calculated, and they 
were then divided into high- and low-subgroups based 
on the median score. The prognostic significance of the 
MitoScore signature was assessed using Kaplan–Meier 
(KM) survival analysis. To confirm its prognostic power, 
we further utilized it in the GSE84437, GSE62254, and 
GSE84426 datasets, which contained survival infor-
mation of external GC datasets. Principal Component 
Analysis (PCA) and t-distributed Stochastic Neighbor 
Embedding (t-SNE) were used to analyze its predictive 
power.

Construct a Predictive Nomogram.
To fully expand the predictive power of MitoScore-
related signature, the nomogram was then constructed 
based on the clinical characteristics, including age, T, 
N, M, pathological stage, and MitoScore signature. Each 
patient could sum up the variable score and finally estab-
lish a predictor of survival. To validate the precision of 
the projected survival rates at 1-, 3-, and 5-year inter-
vals, we generated calibration plots and ROC curves via 
ggDCA and timeROC package.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.broadinstitute.org/mitocarta/
https://www.broadinstitute.org/mitocarta/
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ScRNA‑seq data processing.
The GEO: GSE183904 dataset contains annotated cell 
types from each sample. We determined several cell types 
based on the annotation file.

Using UMAP, we identified different cell types, includ-
ing T cells (CD4 + and CD8 +), B cells, cancer-associated 
fibroblasts, tumor-associated macrophages, tumor-asso-
ciated endothelial cells, and epithelial cells. We analyzed 
the scRNA-seq data and determined metabolic pathway 
enrichment using the ReactomeGSA R package [38]. The 
gene expression levels for each cell type were quantified 
using the “AverageExpression” function in Seurat.

Mutation landscape analysis.
The copy number variation (CNV) profiles of patients 
with GC patients were downloaded using the TCGA 
bio links package and divided into subgroups according 
to the cut-off line of the MitoScore model. GISTIC2.0 
can identify regions of the genome that are significantly 
amplified or deleted in a set of samples, which facilitates 
the localization of the target somatic copy alteration in 
the model [24]. Additionally, we compared common 
somatic mutations in individuals with high- and low-
MitoScore via dplyr package. The total number of non-
synonymous somatic mutations per megabase within 
the whole genome was calculated to determine the TMB 
(tumor mutation burden).

Biological function and pathway enrichment analysis.
In order to explore the biological functions and path-
way processes associated with MitoScore, we conducted 
KEGG (Kyoto Encyclopedia of Genes and Genomes), 
GSVA (http://​www.​bioco​nduct​or.​org), and GSEA 
(https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp) 
analysis using clusterProfiler, GSVA, and GSEABase 
packages. GSVA converts gene expression data from the 
level of an individual gene to the degree of enrichment of 
a gene set, by calculating the level of enrichment of the 
gene set in each sample.

Assessment of immune microenvironment.
We used various bioinformatic algorithms, including 
ssGSEA [25], TIMER [26], CIBERSORT [27],CIBER-
SORT-ABS [28], QUANTISEQ [29], MCPcounter [30], 
Xcell [31] and EPIC [32], to comprehensively assess the 
immune infiltration level and molecular aspects. These 
algorithms estimated the abundance of different immune 
cell subpopulations using specific strategies. Additionally, 
we evaluated the tumor immune score using the ESTI-
MATE algorithm, which quantifies the immune activ-
ity or infiltration level based on gene expression profiles 
[33]. Furthermore, we analyzed the immune activity in 

different immune subtypes, such as wound healing (C1), 
IFN-g dominant (C2), inflammatory (C3), lymphocyte 
depleted (C4), immunologically quiet (C5), and TGF-b 
dominant (C6) [34]. We used the ssGSEA package to 
calculate different immune signatures by computing the 
enrichment or relative abundance of marker genes. We 
analyzed the expression patterns of 60 immunomodula-
tory genes, including those involved in antigen presenta-
tion, cell adhesion, co-inhibitors, co-stimulators, ligands, 
and receptors.

Plasmids and Antibodies, Cells, laboratory animals
LETM2 overexpression plasmid and its control plasmid 
were purchased from Wuhan Miaoling Biotechnolog. 
The following antibodies were used to detect specific 
proteins: LETM2 LETM2 (1:1000) (proteintech 17180-
1-AP), Santa Cruz Biotechnology provided antibodies 
against cyclin D1(1:1000) (sc-20044), CDK2 (1:2000) (sc-
6248), CDK4(1:2000) (sc-260), CDK6(1:1000) (sc-7961). 
Cell Signaling Technology (CST) provided antibodies 
against LDHA(1:500) (  #3582), Glut1(1:1000) (  #73015), 
α-Tubulin(1:10000) (  #2144).AGS and SGC7901 are 
owned by our laboratory and were identified correctly by 
STR sequencing. The nude mice used in this study were 
all BALB/c strain mice, female, 3- 4 weeks old, purchased 
from Viton Lever Technology Co. and kept in the SPF 
grade. All animal studies were conducted according to 
the Association.

ATP, Soft agar colony formation assay (Soft Agar)
First, transfer the cell seed plate to a 96-well plate. Add 
25 μl of PBS to each well, followed by 25 μl of ATP sub-
strate solution. Place the plate in a micro-oscillator and 
shake for 5 min. After shaking, transfer 40 μl of the mix-
ture to a black 96-well plate. Keep the plate at room tem-
perature, away from light, and let it sit undisturbed for 
10 min. Next, turn on the computer and set up the param-
eters of the chemiluminescence instrument. Insert the 
black 96-well plate into the instrument and start the detec-
tion process. Once the test was completed, export the 
experimental data for analysis. Repeat the ATP experiment 
on days 1, 3, and 5 to gather data for different time points.

Flow cytometry
Cells were first seeded into six-well plates, starved for 
12 h, and collected after 24 h of full accompaniment, cen-
trifuged at 1200 g/min for 2 min, discarded the superna-
tant, and the cells were resuspended by adding PBS and 
centrifuged at 1200 g/min for 2 min. Discard the super-
natant, add 200 μl PI staining solution and 30 μl RNase 
per tube and mix well. The cell cycle was detected by flow 
cytometry.

http://www.bioconductor.org
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Western blot assay Protein samples were loaded onto 
PAGE gels, concentrated at 150 V for 15 min, and sepa-
rated at 120  V for 1.5  h. Proteins were transferred to 
membranes, which were subsequently blocked in 5% 
non-fat milk for 1  h and incubated in 1 × primary anti-
bodies overnight at 4  °C. Membranes were washed in 
TBS and incubated in secondary antibody for 2.5–3  h 
at 4  °C, and were subsequently developed. Images were 
scanned, saved, and analyzed using a Typhoon 7000 film 
sweeping instrument.

Statistical analyses
We performed all statistical analyses using the R Project 
software (https://​www.r-​proje​ct.​org/, version 4.0.5). The 
Wilcoxon rank-sum test compared variables between 
two groups, the Kruskal–Wallis test of variance com-
pared variables among multiple groups, and Spearman’s 
rank correlation analysis computed correlation coef-
ficients. Fisher’s exact test or chi-square test compared 
contingency tables and categorical variables. Kaplan–
Meier survival analysis with the log-rank test compared 
the prognosis between two subgroups, and the hazard 
ratio (HR) of variables was calculated using univariate 
and multivariate Cox proportional hazard regression 
analyses. The LASSO-Cox model was computed using 
the Glmnetr package, and the random forest survival 
algorithm was conducted using the randomForestSRC R 
package. Statistical significance was denoted as follows: *, 
p < 0.05; **, p < 0.01; ***, p < 0.0001; ns: not significant.

Results
Preliminary screening of MitoScore
Expression data and clinical information were obtained 
from the TCGA and GEO databases in this study. We 
initially collected 1136 genes related to mitochondrial 
function from the MitoCarta3.0 database. Differential 
analysis was performed to identify genes with differ-
ent expressions (DEGs) between normal and GC tissues 
(Fig.  1A). Then, a Venn plot was used to identify DEGs 
involved in both mitochondrial function and GC prog-
nosis (Fig.  1B), resulting in the selection of 12 genes 
(ALDH3A2, ARMCX2, FKBP10, GCDH, GLS2, IDE, 
LETM2, OSBPL1A, POLRMT, QTRT1, SLC25A15, and 
TIMM8A). The expression patterns of these genes are 
shown in Additional file  1: Figure S1. Additionally, we 
analyzed to examine the expression levels and prognos-
tic implications of these 12 genes across multiple cancer 
types. This pan-cancer analysis provides a comprehensive 
understanding of the gene expression patterns (Addi-
tional file 2: Figure S2A). And their potential impact on 
patient outcomes in various cancer types (Additional 
file 2: Figure S2B).

To develop more precise GC mitochondrial prognos-
tic models, clustering analysis was performed on the 
activity values of the 12 signature genes. The most sta-
ble cluster, K = 2, was identified (Fig.  1C). Ten machine 
learning methods, including random survival forest, 
CoxBoost, support vector machine, gradient boosting 
machine, elastic net, LASSO-Cox, and their combina-
tions, were employed. The average C-index of 101 algo-
rithm combinations was evaluated in the total, training, 
and validation sets to identify the best models (Fig. 1D). 
Finally, the COX and RSF algorithms were used to build 
the MitoScore model (Fig. 1E). External validation data-
sets (GSE84437, GSE15459, GSE26899, GSE26901) were 
used to verify the optimal model. High-risk and low-risk 
groups were categorized based on the median scores of 
the respective cohorts for K-M survival analysis. The 
results showed that patients in the high-risk group had 
a significantly worse prognosis than those in the low-
risk group (Fig.  1F, G and Additional file  1: Figure S3). 
The high MitoScore subgroup was associated with poor 
prognosis and good predictive performance of the model. 
PCA and t-SNE analyses revealed distinct dimensional 
variations between these two clusters. These findings 
highlight the excellent prognostic value and clinical sig-
nificance of MitoScore (Fig.  1F, G and Additional file  3: 
Figure S3).

Construction of a prognostic nomogram based 
on MitoScore
A prognostic nomogram based on MitoScore was con-
structed to assess the predictive usefulness of MitoScore 
in GC patients. Multivariate and univariate Cox regres-
sion analyses were performed to evaluate the predic-
tive power of MitoScore. The nomogram integrated the 
MitoScore and important clinical features, providing a 
quantitative prediction of the prognosis for GC patients 
and aiding in clinical decision-making. To predict patient 
overall survival probabilities, the prognostic nomogram 
of TCGA GC patient, incorporated MitoScore, age, 
and TNM stage, was shown in Additional file  4: Figure 
S4A. The accuracy of the prediction model was verified 
using calibration curves, which demonstrated a good fit 
between the predicted and observed survival probabili-
ties for 1-, 3-, and 5-year survival (Additional file 4: Figure 
S4B). The AUC values of the nomogram indicated a high 
diagnostic value for the model (Additional file 4: Figure 
S4C). Decision curve analysis (DCA) outcomes showed 
that the nomogram model yielded significant net bene-
fits across a wide range of risks (Additional file 4: Figure 
S4D). Overall, these findings suggest that the nomo-
gram model based on the MitoScore signature performs 
strongly in predicting the prognosis of GC patients.

https://www.r-project.org/
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Fig. 1  Preliminary screening of MitoScore signature. A Volcano plot of the differential expressed mitochondria-associated genes analysis in the GC 
and adjacent normal tissues. Red/blue dots represent upregulated/downregulated genes according to the criteria; B Venn plot of DEG, prognostic 
genes, and mitochondria-associated genes; C 101 different combinations of machine learning algorithms used by MitoScore. Each model’s c-index 
was calculated; Survival status, time distribution, tSNE analysis, and PCA analysis between two different subgroups
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Fig. 2  Functional enrichment analysis of MitoScore signature. B GSVA enriched pathways in the high- and low-MitoScore subgroup; C The KEGG 
enrichment analysis of the 15 key MitoScore signature genes; D GSEA enriched pathways in the high- and low-MitoScore subgroup; The top 5 GSEA 
enriched pathways in the E low- MitoScore subgroup and F high-MitoScore subgroup
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Single‑cell sequencing of the MitoScore model
The siRNA sequencing dataset (GSE183904) from the 
GEO database was analyzed, which included 150,798 
cells from GC patients and 150,798 cells from con-
trols (NC). After filtration, a total of 25,576 cells were 
retained for further analysis. Among these cells, the 
first 4000 highly variable genes were selected for subse-
quent analysis.

To assign these genes to known cell lineages, marker 
genes identified in a previous study were used. Leverag-
ing the UMAP algorithm, all cells were meticulously cat-
egorized into 10 immune clusters, providing a detailed 
classification (Additional file 5: Figure S5A). The expres-
sion patterns of the 12 key genes were visualized using 
t-SNE analysis (Additional file 5: Figure S5A). The com-
prehensive bubble plots depicted in Additional file  5: 
Figure S5 Billustrated the expression patterns of charac-
terization marker genes associated with each of the 10 
cell clusters. These plots provide insights into the expres-
sion levels of marker genes specific to each cell type, 
highlighting potential differences in expression patterns 
of these MitoScore genes.

Annotation of clinical characteristics for the MitoScore
To further investigate the relationship between 
MitoScore and clinicopathological parameters, which 
validate the predictive ability of MitoScore on GC prog-
nosis, we conducted a stratified analysis based on the 
expression of the 12 genes in relation to TNM stage, age, 
gender, tumor level, clinical molecular subtype, Her2 
positivity, PI3CA mutation status, TP53 mutation sta-
tus, and EGFR mutant status. As shown in the Additional 
file 6: Figure S6, we found no significant MitoScore dif-
ferences among age, gender, and Her2 status. Surpris-
ingly, we observed significant differences among many 
above classifications, including pathological type, PI3CA 
mutation status, EGFR mutant phenotype status, T-stage, 
N-stage, and M-stage between the high- and low-
MitoScore subgroups.

Kaplan–Meier survival analyses were also performed to 
assess overall survival in different strata of clinical charac-
teristics, including age (< 65  years or ≥ 65  years), gender, 
stage, and pathological subtype (Additional file 7: Figure 

S7). In each subgroup, the high-MitoScore subgroup had 
worse overall survival compared to the low-MitoScore 
subgroup. Notably, in patients with lymphatic metastases 
(N-stage), the difference in survival was significant, while 
in those without lymphatic metastases (N0), the survival 
difference was not significant. These results indicated that 
the MitoScore signature has robust predictive power for 
the multi-subgroup prognosis of GC.

Analysis of potential biological mechanisms of MitoScore 
signature
To develop deeper into the biological processes linked 
to the MitoScore signature, we executed an enrichment 
analysis. The GSVA results indicated that MitoScore was 
primarily associated with many proliferation-related pro-
cesses, such as DNA replication and cell cycle (Fig.  2A, 
B). They were also closely related to cellular metabolism, 
including glycometabolism and amino acid metabolism. 
Similar results were obtained using KEGG analysis. 
MitoScore signature appeared most highly concentrated 
in the metabolic relative pathways, such as fatty acid 
degradation, lysine degradation, and histidine metabo-
lism (Fig.  2C). Furthermore, we utilized GSEA to iden-
tify potential pathways associated with MitoScore 
(Fig. 2D). The lower MitoScore subgroup showed signifi-
cant enrichment for cellular process-related pathways, 
such as cell cycle, DNA replication, excision repair, and 
mismatch repair (Fig.  2E, G). In contrast, the higher-
MitoScore subgroup was predominantly associated with 
cellular metabolic and signaling pathways, including fatty 
acid metabolism and ERBB signaling pathway (Fig.  2F, 
H). Based on these analyses, we found that our model 
was mainly enriched in cell metabolism, signaling path-
way transduction, and cell proliferation. We offer a more 
comprehensive insight into the distinct biological path-
ways observed within the two subgroups of MitoScore 
in Additional file 8: Figure S8. Additionally, we provide a 
detailed analysis of the role played by each model gene 
in Additional file 9: Figure S9 across all KEGG pathways. 
This in-depth investigation allows for a thorough under-
standing of the specific biological mechanisms underly-
ing the observed differences in MitoScore subgroups and 
the potential significance of each model gene in various 
KEGG pathways.

(See figure on next page.)
Fig. 3  Mutation landscape analysis of MitoScore signature genes. Recurrent regions of copy number amplification and deletion in the A low and B 
high- MitoScore subgroup; C the Manhattan plot of copy number in high- (right) and low-(left) MitoScore subgroup; D correlation of frequency 
of arm-level events and number of genes on chromosome arm; E Top 15 mutated genes were illustrated in the low- (up)and high-(down) 
MitoScore signature; F the CNV frequency of each MitoScore signature genes; G The MitoScore of GC patients with microsatellite instability-high 
(MSI-H), microsatellite instability-low (MSI-L) and microsatellite stability (MSS); H Comparison of high- and low- MitoScore subgroups of TMB; I 
MitoScore and TMB-categorized OS Kaplan–Meier curves
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Fig. 3  (See legend on previous page.)
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Mutation landscape analysis of MitoScore signature
To elucidate the genetic profiles of distinct MitoScore 
signatures, we investigated the distribution of somatic 
variants in patients with GC using the map tools pack-
age. We observed different mutation-driven patterns 
between the two MitoScore subgroups. Additionally, 

using GISTIC2.0, we identified the frequency of recur-
rent copy number alterations in the high- and low-
MitoScore groups. We found that the higher MitoScore 
group displayed a higher frequency of recurrent copy 
number alterations compared to the lower subgroup. 
We also identified the most frequent and overexpressed 

Fig. 4  Correlation between the MitoScore and immune microenvironment. A Box plot portrays the dissimilarities in five cancer immunity 
subgroups between MitoScore subgroups; B. Expression pattern and correlation between mRNAsi and MitoScore signature; C Heatmap showed 
the expression levels of MitoScore signature in the seven-step Cancer-Immunity Cycle; D Box plot portrays the dissimilarities in the seven-step 
Cancer-Immunity Cycle between two MitoScore subgroups; E The differences in immune cell subpopulations between the high and low MitoScore 
subgroup
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Fig. 5  Correlation between the MitoScore and immune infiltration cells. A infiltrating immune cells and B immune-related functions in the high 
and low MitoScore subgroups; Correlation analysis to estimate the presence of infiltrating immune cells C and immune-related functions D; The 
heatmap presented the summary of the correlation between MitoScore signature genes expression E, immune-related functions F and 22 immune 
cell types infiltrates
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amplification or deletion events at the Chr9 and Chr 11, 
respectively. (Fig. 3A, B). Notably, we observed a higher 
copy number in chr7 and chr8 in both the lower and 
higher MitoScore subgroups (Fig.  3C). There existed a 
close relation between the frequency of arm-level events 
and several genes on the chromosome arm (Fig. 3D).

We found that TTN, TP53, MUC16, and LRP1B have 
high mutation frequencies in both low-MitoScore and 
high-MitoScore (Fig.  3E). Meanwhile, copy number 
variation (CNV) plays an important role in the study 
of cancer occurrence and development. We found that 
the highest copy number variation (CNV) in this model 
was found in FKBP10 and OSBPL1A (Fig.  3F). Our 
study consistently emphasized the significance of the 12 
MitoScore signature genes in GC. We presented a com-
prehensive evaluation of the diverse roles and charac-
teristics of these genes in pan-cancer (Additional file 10: 
Figure S10).

GC is molecularly classified into four subtypes based 
on their molecular characteristics: EBV (EBV positive), 
MSI (microsatellite instability), GS (genomically sta-
ble), and CIN (chromosomal instability). Considering 
the significant role of TMB and MSI in determining 
individual response to immunotherapy, we examined 
their relationship with MtDEG. Our findings revealed 
that a high MSI in our model corresponded to a lower 
risk and a more favorable prognosis. Conversely, the 
microsatellite stable (MSS) status was higher in the 
high-risk group, and this model demonstrated statistical 
significance in relation to the MSI typology. (Fig.  3G). 
The results showed that MitoScore was markedly and 
negatively correlated with TMB, with patients in the 
low-MitoScore subgroup having higher TMB levels 
(Fig.  3H). TMB was significantly lower in the high-
MitoScore subgroup than in the low- subgroup. The 
integration of two models, characterized by high TMB 
and low-risk MitoScore, resulted in a more favorable 
prognosis (Fig. 3I).

In summary, these results strongly suggested a close 
relationship between the MitoScore in GC. The combina-
tion of the MitoScore signature and TMB may serve as 
a valuable biomarker for predicting the prognosis of GC 
patients.

MitoScore was associated with immune characterization 
and immunotherapy responses in GC
The tumor immune microenvironment plays a crucial 
role in the therapeutic effects and prognosis of patients 
with malignant tumors. Using ssGSEA cluster analysis, 
we classified GC samples into five subgroups: C1 (wound 
healing), C2 (IFN-gamma dominant), C3 (inflamma-
tion), C4 (lymphocyte depletion), and C6 (TGF-beta 
dominant). Simultaneously, we conducted an analysis 
of the immunophenotyping of each gene (Additional 
file 11: Figure S11). KM curves demonstrated significant 
prognostic differences between these subtypes (Fig. 4A). 
Specifically, significant differences were observed in the 
C1 (wound healing) and C3 (inflammation) subgroups. 
Cancer stem cells (CSCs) are a subpopulation of cancer 
cells that exhibit characteristics associated with normal 
stem cells and can give rise to different cell types within 
a tumor. To investigate the gene expression and epige-
netic characteristics of CSCs, we calculated the mRNAsi 
scores of each GC sample. There was a strong correlation 
and variability between mRNAsi scores and MitoScore. 
Specifically, higher MitoScore values were associated 
with lower mRNAsi scores (Fig. 4B).

Seven phases of the tumor immune process are addi-
tionally involved phase 1 (antigen release), phase 2 
(cancer antigen presentation), phase 3 (priming and 
activation), phase 4 (tumor immunized infiltrating cells 
recruitment), phase 5 (immune tissues influx), phase 
6 (cancer cells comprehension by T cells), and phase 7 
(cancer cells executing).

Additionally, we found that there was a stronger 
involvement of the tumor immune process in the first 
phase in high MitoScore samples (Fig. 4C, D).

Considering the essential role of immune infiltration in 
tumorigenesis, we assessed the differences in immune cell 
subpopulations between the higher and lower MitoScore 
subgroups (Fig.  4E, Fig.  5A, C). Specifically, the higher 
MitoScore subgroup had a lower proportion of T cells 
CD4 memory activated and T cells follicular helper. Con-
versely, the lower MitoScore subgroup had a lower pro-
portion of NK cells resting, monocytes, and mast cells 
resting. Furthermore, we explored the differences in the 
expression of immunological function between the high 

Fig. 6  LETM2 significantly promoted the proliferation and metastatic ability of gastric cancer cells. A Identification of stably transfected cells 
overexpressing exogenous LETM2. B ATP proliferation rate assay to detect the effect on AGS cell proliferation after overexpression of LETM2. C 
ATP proliferation rate assay to detect the effect of overexpression of LETM2 on the proliferation of SGC7901 cells. D, E soft agar assay to detect 
the effect on the anchorage-independent growth capacity of AGS、 SGC7901 cells after overexpression of LETM2. F, G Plate cloning assay to detect 
the proliferation of ability of AGS、SGC7901 cells after overexpression of LETM2. H Flow cytometry detection of AGS(Vector), AGS(LETM2) cell cycle 
distribution. I Flow cytometry detection of SGC7901(Vector), SGC7901(LETM2) cell cycle distribution. J Western Blot experiments were performed 
to detect the relevant cyclins that regulate the G0/G1 phase. K Subcutaneous transplanted tumors were photographed. L Tumors were weighed

(See figure on next page.)



Page 13 of 20Ma et al. Journal of Translational Medicine          (2024) 22:381 	

A
Vector

R
el
at
iv
e
P
ro
li
fe
ra
ti
o
n
In
d
ex

1 3 5 Day

*

*

LETM2
AGS

R
el
at
iv
e
P
ro
li
fe
ra
ti
o
n
In
d
ex

1 3 5 Day

*

*

Vector

LETM2
SGC7901

C
o
lo
n
ie
s

1
0
0

*

Vector LETM2

SGC7901

V
ec
to
r

L
E
T
M
2

A
G
S

200μm
V
ec
to
r

L
E
T
M
2

S
G
C
7
9
0
1

200μm

V
ec
to
r

L
E
T
M
2

A
G
S

Vector LETM2

C
o
lo
n
ie
s

1
0
0

*

AGS

V
ec
to
r

L
E
T
M
2

S
G
C
7
9
0
1

KJ

V
ec
to
r

L
E
T
M
2

A
G
S

CDK2

Tubulin

CDK4

CDK6

CYCLINB1

VectorLETM2VectorLETM2

AGS SGC7901 L

*

Vector LETM2

n=5

P<0.05

AGS

Vector

LETM2

SGC7901

Vector

LETM2

C
o
lo
n
ie
s
n
u
m
b
er

Vector LETM2

*

SGC7901

C
o
lo
n
ie
s
n
u
m
b
er

Vector LETM2

*AGS

B C

D E

F G

H I

*
*

G2/M

S

G0/G1

G2/M

S

G0/G1

Vector LETM2 Vector LETM2

150

100

50

0

150

100

50

0

C
el
l
C
y
cl
e
D
is
tr
ib
u
ti
o
n
(%

)

C
el
l
C
y
cl
e
D
is
tr
ib
u
ti
o
n
(%

)

Vector Vector

AGS SGC7901

LETM2LETM2

Tubulin

LETM2

Fig. 6  (See legend on previous page.)



Page 14 of 20Ma et al. Journal of Translational Medicine          (2024) 22:381 

and low MitoScore subgroups. Our analysis revealed that 
the high-MitoScore subgroup exhibited greater immu-
nological function. We observed higher levels of Type I 
IFN Response, Type II IFN Response, and Mast cells in 
the high MitoScore group. Conversely, the low MitoScore 
group exhibited higher levels of APC co-inhibition and 
Cytolytic activity (Fig. 5B, D). At the same time, we also 
explored the relation of MitoScore and immunomodu-
lators, such as antigen-presenting, cell-adhesion, co-
inhibitors, co-stimulatory factors, ligands, and receptors 
(Additional file  12: Figure S12A). We also conducted a 
detailed examination of the distribution of the 12 hub 
genes in terms of immune cells, immune functions, and 
immune modulators, providing valuable insights for 
future studies (Fig. 5E, F, Additional file 12: Figure S12B).

LETM2 promoted the proliferation ability of GC cells
To investigate the potential role of LETM2 in GC devel-
opment, we successfully created LETM2-overexpressing 
stable cell lines in AGS and SGC7901 cells. The overex-
pression efficiency of exogenous LETM2 was confirmed 
through Western Blot assay (Fig. 6A). We then assessed 
the proliferation rate of AGS and SGC7901 cells over-
expressing LETM2 using the ATP proliferation rate 
assay on days 1, 3, and 5. The results demonstrated that 
LETM2 significantly promoted the proliferation ability 
of GC cells in  vitro (Fig.  6B, C). Additionally, soft agar 
and plate cloning assays revealed that LETM2 promoted 
the anchorage-independent growth ability of GC cells 
(Fig. 6D, G).

Furthermore, we examined the cell cycle distribution 
of LETM2-overexpressing cells and control cells using 
flow cytometry. We observed a significant acceleration 
of the G0/G1 phase in the experimental group cells over-
expressing LETM2 (Fig.  6H, I). Considering the impact 
of LETM2 on cell cycle progression in gastric cancer, 
we conducted Western Blot experiments to evaluate the 
expression of G0/G1 phase-associated cyclins, CDK2, 
CDK4, CDK6, CyclinB1, and CyclinE2. The results 
showed upregulation of CDK4 (Fig. 6J).

To better understand the effect of LETM2 on the pro-
liferation ability of GC cells in a complex in  vivo envi-
ronment, we established a nude mice subcutaneous 

xenograft tumor model. Compared to control cells, the 
experimental group cells overexpressing LETM2 exhib-
ited significantly higher tumor weight (Fig.  6K, L). The 
proliferative ability of gastric cancer cells was inhib-
ited after knocking down the cell lines simultaneously 
(Additional file  13: Figure S13).These in  vivo findings 
further support the inhibitory role of LETM2 in GC cell 
proliferation.

LETM2 exerted a tumor‑promoting effect by increasing 
mitochondrial ATP and glycolysis
Given that LETM2 is a nuclear-encoded mitochondrial 
inner membrane protein, we hypothesized that LETM2 
may impact mitochondrial function, thereby affecting the 
proliferation of GC cells. To investigate this, we exam-
ined the changes in mitochondrial membrane potential 
and mitochondrial ATP levels in GC cells overexpress-
ing LETM2 using flow cytometry. The results revealed 
a significant increase in both mitochondrial membrane 
potential and mitochondrial ATP in LETM2-overex-
pressing cells (Fig. 7A, D).

Mitochondrial respiration plays a crucial role in provid-
ing substrates for glycolysis. We theorized that glycolysis 
might be upregulated to compensate for the increased 
mitochondrial function, consequently promoting the 
proliferation of GC cells. To validate this hypothesis, we 
assessed the impact of LETM2 overexpression on glyco-
lysis in GC cells by analyzing the levels of the expression 
of key glycolysis-related proteins, glucose transporter 1 
(GLUT1), and lactate dehydrogenase A (LDHA), using 
Western blotting. The results showed that LETM2 over-
expression increased the protein expression levels of 
GLUT1 and LDHA (Fig.  7E). We also tested the ability 
of glucose uptake, pyruvate production, and lactate pro-
duction. We found the levels of glucose uptake, pyruvate 
production, and lactate production were significantly 
higher in LETM2-overexpressing cells compared to the 
control group, indicating an enhanced glycolytic activity 
(Fig. 7F–I).

In summary, these findings suggested that LETM2 
overexpression elevates mitochondrial function, leading 
to an increase in glycolysis and promoting the prolifera-
tion of GC cells.

(See figure on next page.)
Fig. 7  LETM2 exerts pro-carcinogenic effects by enhancing mitochondrial and glycolytic functions. A Flow cytometry detection of mitochondrial 
membrane potential in AGS(Vector), AGS(LETM2). B Flow cytometry detection of SGC7901(Vector), SGC7901(LETM2) mitochondrial membrane 
potential. C Flow cytometry detection of mitochondrial ATP in AGS(Vector), AGS(LETM2). D Flow cytometry detection of mitochondrial ATP 
in SGC7901(Vector), SGC7901(LETM2). E Western Blot assay detected related proteins regulating glycolysis F Enzyme labeling assay for AGS(Vector), 
AGS(LETM2) glucose uptake levels. G ELISA for SGC7901(Vector), SGC7901(LETM2) glucose uptake. H ELISA for AGS(Vector), AGS(LETM2) Pyruvate, 
Lactate Production I ELISA for SGC7901(Vector), SGC7901(LETM2) Pyruvate, Lactate Production
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Fig. 7  (See legend on previous page.)
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LETM2 promoted GC cell proliferation by activating 
mitochondrial transcription factors and glycolysis 
via the mTOR pathway.
Considering that mTOR is crucial for maintaining mito-
chondrial oxidative function and plays a role in glucose 
metabolism, we investigated whether LETM2 overex-
pression activates the mTOR pathway. We demonstrated 
the activation of the mTOR pathway upon LETM2 over-
expression (Fig.  8A). To confirm that mTOR pathway 
activation is responsible for maintaining mitochondrial 
function and promoting glycolysis, we employed rapamy-
cin to inhibit the mTOR pathway (Fig. 8B). Interestingly, 
we observed a deceleration in tumor cell growth upon 
treatment with rapamycin. This inhibitory effect was evi-
dent through the ATP proliferation rate detection assay, 
soft agar assay, and plate cloning assay, where rapamycin 
significantly suppressed the proliferative ability of GC 
cells (Fig. 8C–H).

These findings suggest that LETM2 overexpression 
activates the mTOR pathway, which in turn contributes 
to the maintenance of mitochondrial function and facili-
tates glycolysis. Furthermore, the inhibition of the mTOR 
pathway through rapamycin treatment leads to a notable 
reduction in the proliferation of GC cells.

Discussion
GC is a complex and heterogeneous disease, making it 
challenging to predict patient prognosis. Prognostic fac-
tors are crucial in estimating disease progression, select-
ing appropriate treatments, and determining overall 
survival rates. Machine learning techniques are increas-
ingly being used to predict cancer patient survival; how-
ever, effectively implementing them in clinical practice 
while maintaining accuracy is still a challenge. In this 
study, we utilized a novel computational framework and 
collected expression files from 1176 GC patients across 
five multi-cohorts worldwide to explore the correlation 
between mitochondrial function and prognosis in GC. 
Our model identified 12 genes (ALDH3A2, ARMCX2, 
FKBP10, GCDH, GLS2, IDE, LETM2, OSBPL1A, POL-
RMT, QTRT1, SLC25A15, TIMM8A), referred to as 
mitochondrial differentially expressed genes, which play 
a significant role in prognosis. We found that MitoScore 
can be a valuable tool for guiding therapeutic decisions 

and improving patient prognosis. By identifying these 
genetic alterations through MitoScore, clinicians can gain 
important insights into potential molecular mechanisms.

Mitochondrial dysfunction is a hallmark of cancer and 
a risk factor for gastric carcinogenesis. Therefore, iden-
tifying effective mitochondria-associated biomarkers for 
predicting the prognosis of GC patients is an encourag-
ing research direction. Mitochondria are crucial energy 
suppliers of eukaryotic cells, acting as cellular stress sen-
sors that regulate cell signaling, metabolism, and other 
biological processes through the production of reactive 
oxygen species (ROS) and the modulation of metabolites. 
Mitochondrial dysfunction is strongly associated with 
various diseases, including cancer development and pro-
gression [35]. Specific mitochondrial aberrations, such 
as oxidative damage, impaired ATP synthesis, disturbed 
calcium metabolism, mitochondrial DNA damage, and 
mitochondrial outer membrane permeability disorders, 
are unique to tumor cells and may increase programmed 
cell death or apoptosis [36, 37]. Targeting mitochondria 
has emerged as a promising approach for cancer therapy, 
with various inhibitors being developed and tested in 
clinical trials [38–40].

LETM2, a mitochondria-associated protein, has been 
found to be highly expressed in GC tissues, but its role in 
GC progression remains unclear. In our experiments, we 
discovered that overexpression of LETM2 promoted GC 
cell proliferation and metastasis both in vitro and in vivo. 
We hypothesized that LETM2  affects GC cell prolifera-
tion by affecting mitochondrial function. Supporting this 
hypothesis, we observed an increase in mitochondrial 
membrane potential, and mitochondrial ATP levels, 
upon LETM2 overexpression, suggesting improved mito-
chondrial health. Mitochondrial respiration provides the 
necessary substrates for glycolysis, leading us to theo-
rize that compensatory glycolysis may be upregulated to 
promote the proliferation of GC cells. Indeed, we found 
enhanced glycolytic capacity upon LETM2 overexpres-
sion. Thus, we propose that LETM2 promotes GC cell 
proliferation by increasing mitochondrial homeosta-
sis and enhancing glycolysis. Further analysis revealed 
that LETM2 is enriched in the mTOR pathway, a nutri-
ent sensor that regulates mitochondrial oxidative func-
tion. mTOR is essential for maintaining mitochondrial 

Fig. 8  LETM2 exerts pro-carcinogenic effects by activating the MTOR pathway. A Western Blot assay to detect changes in the MTOR pathway 
after overexpression of LETM2. B Western Blot assay to detect changes in the MTOR pathway after treatment with rapamycin. C ATP proliferation 
rate assay to detect the effect of treatment with rapamycin on AGS cell proliferation. D ATP proliferation rate assay to detect the effect of rapamycin 
treatment on the proliferation of SGC7901 cells. E soft agar assay to detect the effect of treatment with rapamycin on the anchorage-independent 
growth capacity of AGS cells. F soft agar assay to detect the effect of treatment with rapamycin on the anchorage-independent growth capacity 
of SGC7901 cells G plate cloning assay to detect the effect of treatment with rapamycin on the proliferation of AGS cells. H Plate cloning assay 
to detect the effect of treatment with rapamycin on the proliferation of SGC7901 cells

(See figure on next page.)
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respiratory capacity and plays a role in controlling cancer 
cell metabolism by regulating anabolic processes such as 
ribosome biogenesis and protein, nucleotide, fatty acid, 
and lipid synthesis [19, 41–43].

Glucose is the primary source of cellular energy, and 
cancer cells increase glucose uptake and glycolytic flux 
to sustain growth and proliferation. We hypothesized 
that LETM2 may activate the mTOR pathway to improve 
mitochondrial health and enhance glycolysis. To test this 
hypothesis, we treated GC cells overexpressing LETM2 
with the mTOR inhibitor Rapamycin and observed a 
reduction in the proliferative capacity of these cells.

In summary, starting from the central molecule of 
energy regulation, mTOR, we discovered that LETM2 
overexpression promotes mitochondrial respiratory 
capacity, glycolytic function, and GC proliferation 
through mTOR activation. mTOR signaling is commonly 
activated in tumors and controls cancer cell metabolism 
by altering expression or activity [17]. By utilizing mTOR 
inhibitors in patients with high LETM2 expression, we 
can provide a theoretical basis for their use in the treat-
ment of GC patients.

Conclusion
In summary, our study has successfully developed a 
MitoScore signature, which was subsequently vali-
dated in five external cohorts, demonstrating its supe-
rior predictive performance. Importantly, the MitoScore 
remained a powerful prognostic indicator even after 
adjusting for potential confounding factors, outperform-
ing established clinical models. Furthermore, our investi-
gation into the association between MitoScore and tumor 
immune microenvironment provides valuable insights 
for future in-depth studies. Moreover, our research iden-
tified LETM2 as a risk factor for GC prognosis, suggest-
ing its potential as a promising prognostic indicator.
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