
Huang et al. Journal of Translational Medicine          (2024) 22:259  
https://doi.org/10.1186/s12967-024-05028-7

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Amino acid profile alteration in age‑related 
atrial fibrillation
Yunying Huang1,2,3,4†, Qiuzhen Lin1,2,3,4†, Yong Zhou1,2,3,4, Jiayi Zhu1,2,3,4, Yingxu Ma1,2,3,4, Keke Wu1,2,3,4, 
Zuodong Ning1,2,3,4, Zixi Zhang1,2,3,4, Na Liu1,2,3,4, Mohan Li1,2,3,4,5, Yaozhong Liu1,2,3,4,6, Tao Tu1,2,3,4* and 
Qiming Liu1,2,3,4*    

Abstract 

Background  Amino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correla-
tion between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship 
between AAs and age-related AF remains unclear.

Methods  Initially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correla-
tions between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse 
model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs 
and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected 
by a 16S rDNA amplicon sequencing analysis on mouse fecal samples.

Results  Higher circulation levels of lysine (Student’s t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), 
methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persis-
tent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The 
association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles 
were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, 
L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented 
a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration.

Conclusion  This study provided a comprehensive network of AA disturbances in age-related AF from multiple 
dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, 
and restoring their homeostasis may have potential benefits for the management of age-related AF.
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Introduction
Atrial fibrillation (AF) is the most common sustained 
cardiac arrhythmia in clinics with significant morbid-
ity and mortality. The estimated prevalence of AF in 
adults ranges between 2 and 4% [1], and its rise is pro-
jected due to the extended longevity [2]. Advanced age 
is the most prominent risk factor for the incidence, 
prevalence [2, 3], and progression [4–7] of AF. Par-
ticipants aged 80–89 years had a 9.33-fold increased 
risk of AF compared to those aged 50–59 years [8]. It 
remains uncertain whether aging in age-related AF is a 
determinant of adverse prognosis or rather a marker of 
an underlying progressive substrate. Thus, an in-depth 
understanding of its mechanism is still expected.

While electrical, structural, and contractile remod-
eling are well-known contributors to AF incidence and 
progression [9], the role of cardiac metabolic remod-
eling in AF remains largely unexplored. Atrial fibril-
lation is characterized by irregular high-frequency 
excitation and contraction, which disrupts the bal-
ance between metabolic demand and supply and 
causes metabolic stress [10, 11]. Recent metabolomic, 
proteomic, and transcriptomic studies suggested the 
involvement of metabolism in AF pathophysiology 
[12–14].

Amino acids (AAs) are one of the primary meta-
bolic substrates for cardiac work, and their homeo-
stasis affects cardiovascular physiology and pathology 
[15, 16]. Atrial appendage tissues from persistent AF 
patients had higher levels of ketogenic AAs and gly-
cine [12]. Plasma AA profiles of AF patients had lower 
circulating level of 4-hydroxy-pyrrolidine-2-carboxylic 
acid (4HP2C) [17], implying defective proline metab-
olism. The correlation between disturbed AAs and 
aging has been reported, and the majority of the report 
revealed decreased branched-chain AAs (BCAAs) and 
increased citrulline with old age [18–22]. Proposed 
mechanisms included aging-related reduced dietary 
protein intake, reduced muscle mass, and altered glu-
coneogenesis and urea cycle metabolism [23, 24].

The observed AAs profile disturbances in both AF 
and aging suggest that AAs may participate in the 
development of age-related AF. However, AA altera-
tions in age-related AF have not been investigated. To 
address this gap, our study analyzed plasma AA levels 
of persistent AF patients and their relationship with 
age, myocardial metabolites of aged AF mouse mod-
els, and gut microbiota of aged AF mouse models. Our 
study illustrated that AA disturbance may be one of 
the potential mechanisms of metabolic remodeling in 
age-related AF.

Material and method
Patient enrollment
Patients admitted to the cardiology departments of 
the Second Xiangya Hospital of Central South Univer-
sity between September 2021 and January 2022 were 
selected. Eligible patients were diagnosed with per-
sistent AF and with ages between 18 and 80 years old. 
According to the 2020 ESC guideline, persistent AF 
is defined as AF consistently sustained for more than 
7 days, including episodes terminated by cardiover-
sion after the 7-day threshold [1]. The exclusion crite-
ria were: (1) severe non-cardiac diseases, (2) expected 
life expectancy of less than 1 year, and (3) other health 
behaviors that might affect the study, such as alcohol-
ism. This study was approved by the Ethics Committee 
of Second Xiangya Hospital of Central South Univer-
sity. All procedures performed in this study involving 
human participants were following the ethical stand-
ards of the institutional and/or national research com-
mittee and with the 1964 Helsinki Declaration and its 
later amendments or comparable ethical standards. 
Informed consent was gained from all subjects.

Demographic and biochemical measurements
The hospital medical records were accessed to retrieve 
the participants’ demographic information and medical 
history. Peripheral blood samples were collected from 
the participants for biochemical measurements, includ-
ing blood routine tests, liver function, renal function, 
thyroid function, blood lipid, blood glucose, creatine 
kinase, etc. The cardiac ultrasound parameters were 
also recorded.

Patient plasma collection and AAs detection
Plasma samples were collected from 30 persistent AF 
patients and 30 corresponding control participants. 
After an overnight fasting, peripheral blood samples 
were obtained using 5  mL vacutainer tubes contain-
ing the anticoagulant agent ethylenediaminetetraacetic 
acid. These samples were then centrifuged at 2500 rpm 
for 15 min (min) at 4 °C. The resulting plasma samples 
were stored at –80 °C until further analysis.

Appropriate amounts of plasma were taken and mixed 
with methanol at a ratio of 1:5 (v/v). The mixture was 
subjected to ultrasonication for 20  min, followed by 
centrifugation (4 °C, 12,000 rpm, 20 min) to collect the 
supernatant. A 1:1 ratio was used to mix the supernatant 
with the internal standard, 4-aminobenzoic acid. The 
mixture was vortexed and then centrifuged at 12,000 
rpm for 10  min. The resulting supernatant was used 
for AA detection by the liquid chromatography-mass 
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spectrometry (LC–MS) assay (QTRAP 6500 + System, 
SCIEX).

The significantly different AAs were shown in the vol-
cano plot. To assess their diagnostic efficacy, receiver 
operating characteristic (ROC) curves were plotted and 
the area under the curve (AUC) was calculated. The 
automated identification of important AAs was con-
ducted by multivariate machine learning algorithms, 
including LASSO (least absolute shrinkage and selec-
tion operator), SVM-RFE (Support Vector Machine-
Recursive Feature Elimination), Random Forests, and 
XGBoost (Extreme Gradient Boosting). In LASSO, the 
optimal regression model and variables were obtained 
using lambda.1se. SVM-RFE and Random Forests 
selected crucial AAs based on the minimum cross-
validation error. XGBoost determined the optimal 
number of iterations with the lowest logarithmic loss 
during cross-validation, resulting in a model. Top fea-
ture importance AAs were selected in the XGBoost 
model. The integration of outcomes from these four 
machine learning algorithms identified feature AAs 
strongly correlated with AF with high accuracy. Cor-
relation analysis was conducted to examine the cor-
relations between AAs and clinical characteristics of 
participants.

Atrial fibrillation mouse model establishment
C57BL/6 J adult male mice (8–12 weeks old) and 
C57BL/6 J aged male mice (13 months old) were obtained 
from SJA Laboratory Animal Co. Ltd (Changsha, China). 
The mice were housed under controlled tempera-
ture and lighting, with ad  libitum access to water and a 
standard chow diet. The mice were randomly assigned 
to four groups: adult control (Group A, Aadcon), adult 
AF (Group B, BadAF), aged control (Group C, Cagcon), 
and aged AF (Group D, DagAF). Mice of the AF groups 
(Group B and Group D) received daily injections of a 
mixture solution of acetylcholine (Ach, 66 μg/kg body 
weight; Shanghai Macklin Biochemical Ltd., Shanghai, 
China) and calcium chloride (CaCl2, 10 mg/kg body 
weight; Shanghai Macklin Biochemical Ltd., Shanghai, 
China) by medial canthal vein (i.v.) for 4 weeks, while the 
mice of the control groups (Group A and Group C) were 
injected with saline [25–27].

To confirm the establishment of the AF mouse mod-
els, surface electrocardiogram (ECG, Rhythmia Map-
ping System, Shanghai Hongtong Industrial Co., Ltd) 
and echocardiography (VINNO Technology Suzho Co., 
Ltd.) were recorded. The cardiac structural and func-
tional parameters were recorded, including left atrial area 
(LAA), left ventricular internal diameter at end-diastole 
(LVIDs), left ventricular internal diameter at end-systole 

(LVIDd), fractional shortening (FS), and left ventricular 
ejection fraction (LVEF).

Myocardial histological changes in the mouse model 
were detected. Following overnight fixation in 4% para-
formaldehyde, the mice’s heart tissues were paraf-
fin-embedded and sectioned into 5-μm-thick slices. 
Myocardial fibrosis was assessed through Masson-
stained sections. Five optical fields were then examined 
per section (Image J), with the evaluation conducted in a 
blinded manner.

The animal use protocol listed above has been reviewed 
and approved by the Institutional Animal Care and Use 
Committee (IACUC), The Second Xiangya Hospital, 
Central South University, China (Approval number: 
2022730).

Myocardial untargeted metabolomics of AF mouse model
Heart tissues of the mouse model were collected and 
used for myocardial untargeted metabolomics analysis. 
Mice heart tissues were homogenized with 200  µL of 
water. Then, 800  µL of methanol/acetonitrile (1:1, v/v) 
was added to the homogenized solution. The mixtures 
were then centrifuged (4 °C, 14000 × g, 15 min) and the 
supernatants were collected and dried. The dried super-
natants were redissolved in 100 µL of acetonitrile/water 
(1:1, v/v) solvent for LC–MS/MS analysis. The LC–MS/
MS analysis was performed by UHPLC (1290 Infinity LC, 
Agilent Technologies) and quadrupole time-of-flight (AB 
Sciex TripleTOF 6600).

The raw data were converted and imported into XCMS 
software for data analysis. Analysis was performed for 
all metabolites detected in positive and negative ion 
modes, including those not identified. The univariate 
analysis included fold change (FC) analysis and Student’s 
t-test. Differential metabolites in univariate analysis were 
defined as those with FC > 1.5 or FC < 0.67 and Student’s 
t-test P-value < 0.05 and shown in the volcano plot. To 
better reveal features of these complex datasets, multi-
dimensional statistical analyses were used [28], including 
principal component analysis (PCA) [29] and orthogo-
nal partial least-squares discriminant analysis (OPLS-
DA) [30, 31]. The robustness of each analysis model was 
evaluated by sevenfold cross-validation and response 
permutation testing (Additional file  10: Table  S3). The 
significant differential metabolites were identified as 
OPLS-DA variable importance in the projection (VIP) 
[32, 33] value > 1 and Student’s t-test P-value < 0.05, with 
qualitative names. Their enrichment in KEGG pathways 
was assessed by Fisher’s exact test.
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16S rDNA amplicon sequencing of AF mouse model gut 
microbiota
The fresh fecal samples of the AF mouse model were 
collected for 16S rDNA amplicon sequencing. Their 
genomic DNA was extracted, and their V3-V4 variable 
regions (primer of 16S V3-V4: 341F-806R) were PCR 
amplified. The target fragments of PCR products were 
excised and recovered (AxyPrepDNA gel recovery kit, 
AXYGEN). The PCR products were detected and quan-
tified (QuantiFluor™-ST blue fluorescence quantitative 
system, Promega). Sequencing library construction 
was performed by the NEB Next® Ultra™ DNA Library 
Prep Kit for Illumina (NEB, USA). Operational Taxo-
nomic Units (OTUs) cluster and species annotation 
sequences analysis were performed by UPARSE-OTU 
and UPARSE-OTUref algorithms using the UPARSE 
software package. Sequences with ≥ 97% similarity were 
assigned to the same OTUs. Taxonomic information 
was annotated using the Ribosomal Database Project 
classifier.

Alpha (within a group) and beta (among groups) diver-
sity were calculated by a set of in-house Perl scripts. Cal-
culated alpha diversity index included the diversity index 
of the flora (Shannon and Simpson), the abundance index 
of flora (Chao 1 and ACE), the number of OTU (observed 
species), the sequencing depth index (goods coverage), 
and phylogenetic diversity index (PD_whole_tree). The 
beta diversity based on weighted and unweighted unifrac 
distance was calculated by QIIME software package. The 
relative abundance of the top 10 phyla among four groups 
was presented in the Pareto chart.

The non-metric multi-dimensional scaling (NMDS) 
analysis and ANOSIM test were used to assess the com-
position differences across the gut microbial communi-
ties. The linear discriminant analysis (LDA) effect size 
(LEfSe) determined the species with a significant impact 
on the classification of the samples (LEfSe LDA score > 2 
and P-value < 0.05). Species relative abundance at differ-
ent taxonomic levels were plotted as a taxonomic clad-
ogram based on LEfSe results.

The PICRUSt software inferred the functional gene 
composition based on 16S sequencing results. The 
STAMP differential analysis compared the KEGG and 
COG functional prediction results (Welch’s t-test analy-
sis) and identified the significantly different functional 
profiles of gut microbiota between groups.

Correlation of different metabolites and different gut 
microbiota
To depict the similarities and differences in the expres-
sion patterns of the significantly different metabolites 
and gut microbiota, a Spearman correlation analysis was 

used to calculate the correlation coefficients. Then, hier-
archical cluster analysis was used to cluster the correla-
tion results. This analysis allows for the identification of 
clusters of metabolites that show similar correlation pat-
terns with specific gut microbiota.

Statistics
Continuous variables are expressed as means ± standard 
deviations or medians (interquartile ranges), and cat-
egorical variables are expressed as absolute numbers and 
percentages. Two groups of continuous variables com-
parison was conducted by either the student’s t-test (nor-
mally distributed data) or the Wilcoxon rank-sum test 
(non-normally distributed). Three or more groups of con-
tinuous variables comparison was conducted by either 
the ANOVA (normally distributed) or the Kruskal–Wal-
lis test (non-normally distributed). Categorical variables 
were compared using chi-square statistic tests or Fisher’s 
exact test. Correlation analysis was conducted by Pear-
son’s (parametric data) or Spearman’s (non-parametric) 
analysis. A P value of less than 0.05 was considered sta-
tistically significant. Statistical analysis was performed 
on SPSS 20.0. Data drawing was completed by GraphPad 
Prism 9.0 software and R 4.1.2.

Results
Participants baseline characteristics
A total of 60 participants including 30 persistent AF 
patients and 30 control subjects without AF were 
enrolled. Table 1 shows the demographic and biochemi-
cal characteristics of patients. The ratio of male to female 
participants was approximately equal. The mean age 
of participants in the control and AF groups was 57.4 ± 
9.9 and 58.3 ± 10.2 years old, respectively. Serum total 
cholesterol (P = 0.008) and low-density lipoprotein cho-
lesterol (P = 0.006) levels in AF patients were lower. AF 
patients exhibited larger left (P < 0.001) and right atrial 
diameter (P < 0.001), coupled with lower left ventricu-
lar ejection fraction (P < 0.001), indicating cardiac func-
tion deterioration. No other significant differences in the 
baseline characteristics were observed.

Altered plasma AA profile in persistent AF patients 
and clinical characteristics
As described in Table 2, a total of 22 plasma AA metab-
olites were profiled and compared in persistent AF 
patients and their controls. Higher levels of lysine (Stu-
dent’s  t-test, P = 0.001), tyrosine (P = 0.002), glutamic 
acid (P = 0.008), methionine (P = 0.008), and isoleucine 
(P = 0.014), while a lower level of glycine (P = 0.003) were 
observed in the persistent AF patients (Fig.  1A). Their 
area under the ROC curve (AUC) ranged from 0.628 to 
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0.778 (Additional file 1: Figure S1), implying their certain 
diagnostic efficacy.

The machine learning algorithms, comprising LASSO, 
SVM-RFE, Random Forest, and XGBoost, identified 
varying numbers of important AAs: 5 in LASSO screen-
ing (glutamic acid, tyrosine, methionine, asparagine, and 
proline), 7 in SVM-RFE screening (glutamic acid, methio-
nine, lysine, histidine, proline, alanine, and asparagine), 6 
in Random Forest (glutamic acid, methionine, lysine, ala-
nine, proline, and histidine), and 4 in XGBoost (glutamic 
acid, methionine, alanine, and lysine) (Additional file  2: 
Figure S2). The core intersecting AAs were the glutamic 
acid and methionine (Fig. 1B).

The alanine, proline, cystine, homocysteine, and tyros-
ine were positively correlated with age in control group 
(Fig. 1C). The cystine, citrulline, and homocysteine were 
positively correlated with age in AF group (Fig.  1D). 
Notably, while alanine, proline, and tyrosine exhibited 
positive correlations with age in control group, they 
exhibited negative correlations with age in AF group. 
The correlations between AAs and clinical indicators are 
explored and detailed in Fig. 1E, F.

Atrial fibrillation mouse model establishment
After four weeks of intravenous injection of Ach and 
CaCl2, the ECG of AF mice (Group B and Group D) 
showed irregular and rapid AF waveform (Fig. 2A). Atrial 
fibrillation mice showed more severe myocardial fibro-
sis than their respective controls and aged AF mice dis-
played the most severe degree of fibrosis (Fig.  2C, D). 
Atrial fibrillation mice had larger left atriums shown in 
both echocardiography and gross specimen, and aged 
AF mice exhibited the largest left atrium size (Fig.  2B, 
E). Additionally, aged AF mice exhibited the lowest frac-
tional shortening (FS) and ejection fraction (LVEF) values 
among all the groups (Additional file 3: Figure S3).

Altered cardiac metabolites of aged AF mice
Untargeted metabolomics comprehensively identified 
cardiac metabolic profiles between four mice groups 
(Additional file  10: Table  S1, S2). PCA presented a dis-
tinction between them in both positive (POS) and nega-
tive (NEG) ion modes (Fig. 3A, B). Significantly different 
metabolites between groups were defined as OPLS-DA 
VIP > 1 and P-value < 0.05. Adult AF mice compared to 

Table 1  Baseline characteristics of persistent atrial fibrillation patients and their control

Control (n = 30) Atrial fibrillation (n = 30) P

Age, y 57.4 ± 9.9 58.3 ± 10.2 0.73

Male/Female 14/16 15/15 1

Body mass index, kg/m2 24.09 ± 2.71 25.41 ± 3.52 0.174

Smoking, n (%) 7 (23.3) 5 (16.7) 0.748

Alcohol intake, n (%) 5 (16.7) 5 (16.7) 1

Systolic pressure, mmHg 129.9 ± 16.6 124.7 ± 15.8 0.222

Diastolic pressure, mmHg 82.7 ± 11.8 81.3 ± 14.1 0.675

Hypertension, n (%) 13 (43.3) 17 (56.7) 0.439

Diabetes, n (%) 3 (10.0) 6 (20.0) 0.472

Coronary heart disease, n (%) 7 (23.3) 9 (30) 0.771

Triglyceride (mmol/L) 1.22 (0.95, 2.49) 1.34 (0.96,1.67) 0.229

Total cholesterol (mmol/L) 4.58 ± 0.98 3.97 ± 0.73 0.008

High-density lipoprotein cholesterol (mmol/L) 1.11 ± 0.25 1.15 ± 0.20 0.575

Low-density lipoprotein cholesterol (mmol/L) 2.94 ± 0.82 2.38 ± 0.70 0.006

Free triiodothyronine (pmol/L) 3.25 ± 0.91 3.41 ± 1.62 0.668

Free thyroxine (pmol/L) 4.48 ± 6.01 4.84 ± 6.89 0.839

Thyroid-stimulating hormone (mIU/L) 4.38 ± 8.87 2.54 ± 2.12 0.284

Creatine kinase (U/L) 83.61 ± 36.82 100.99 ± 64.34 0.224

Creatine kinase isoenzyme (CK-MB) (U/L) 17.53 ± 16.81 16.65 ± 5.12 0.798

Alanine aminotransferase (U/L) 19.74 ± 9.57 23.97 ± 14.95 0.204

Aspartate aminotransferase (U/L) 19.80 ± 4.78 22.69 ± 7.01 0.07

Creatinine 84.64 ± 85.31 77.26 ± 17.38 0.644

C-reactive protein 2.07 ± 3.44 1.36 ± 2.35 0.417

Left atrial diameter (mm) 33.07 ± 3.47 43.45 ± 5.08  < 0.001

Right atrial diameter (mm) 31.52 ± 3.21 38.24 ± 5.03  < 0.001

Left ventricular ejection fraction (%) 62.15 ± 3.90 55.86 ± 7.20  < 0.001
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adult controls had 48 significantly different metabolites 
(Additional file 4: Figure S4; Additional file 10: Table S4, 
S5), including Creatinine, L-Aspartate, Betaine, 4-Amin-
obutyric acid, Glutathione, L-Pyroglutamic acid, and 
Phenylacetylglycine. Aged AF mice compared to aged 
controls had 26 significantly different metabolites (Addi-
tional file  5: Figure S5; Additional file  10: Table  S6, S7), 
including L-Phenylalanine. Aged controls compared to 
adult controls had 43 different metabolites (Additional 
file 6: Figure S6; Additional file 10: Table S8, 9), including 
L-Aspartate and Creatinine.

When comparing aged AF and adult AF mice, differen-
tial myocardial metabolites detected in univariate analy-
sis (FC > 1.5 or FC < 0.67 and P-value < 0.05) were shown 
in the volcano plot (Fig.  4A, B). The multi-dimensional 
statistical analyses OPLS-DA for aged AF vs. adult AF 
mice in positive ion mode showed strong model statis-
tics for outcome (R2Y = 0.997) and reproducibility (Q2 
= 0.686, 7-fold cross-validation)  (Fig.  4C, D). In total, 
there were 31 and 10 significantly different metabolites 
in POS and NEG ion mode, respectively (Fig. 4E, Addi-
tional file 7: Figure S7; Additional file 10: Table S10, 11). 

Aged AF mice had significantly lower levels of amino 
acids, peptides, and analogues, including Betaine (VIP = 
8.57, FC = 0.72, P = 0.002), L-histidine (VIP = 5.68, FC 
= 0.51, P = 0.008), L-alanine (VIP = 2.81, FC = 0.80, P = 
0.012), and L-arginine (VIP = 5.41, FC = 0.58, P = 0.034). 
Although the L-Pyroglutamic acid (VIP = 2.49, FC = 
0.62, P = 0.054) and L-Citrulline (VIP = 1.37, FC = 0.71, 
P = 0.098) were not statistically different in two groups, 
they were also relatively lower in aged AF mice. These 
AAs and related metabolites that varied in aged and 
adult AF mice were the ones associated with age-related 
AF. The identified differential metabolites enriched in 
KEGG pathways of alanine, aspartate, glutamate metabo-
lism, beta-alanine metabolism, and tyrosine metabolism 
(Fig.  4F). Four groups exhibited unique expression pro-
files of myocardial AAs and related metabolites (Fig. 3C).

Dysbacteriosis of aged AF mice
The alpha diversity (Shannon, P = 8.00E-05; Simpson, 
P = 5.00E-06; PD_whole_tree, P = 1.03E-02) and beta 
diversity (Weighted unifracbeta distances, P = 3.30E-08; 
Unweighted unifracbeta distances, P = 1.18E-05) of mice 
gut microbiota were significantly different among four 
groups (Additional file 10: Table S12, S13). The aged AF 
mice had significantly lower alpha diversity (Fig. 5A) and 
beta diversity (Fig. 5B) compared with the other groups.

The species abundance clustering at the phylum level 
revealed distinctive compositions across four groups 
(Fig. 5C). Based on the cumulative percentage presented 
in the Pareto line, the top 3 gut microbiota phyla (p__
Bacteroidetes, 42.83%; p__Firmicutes, 38.05%; p__Ver-
rucomicrobia, 15.29%) collectively contributed to 96.17% 
of the total abundance and their relative abundance in 
each group varies. The relative abundance of  Bacteroi-
detes exhibited significant differences among groups 
(P = 5.76E-07). It was the predominant phylum in con-
trol groups, with a relative abundance of 58% in Group 
A and 50% in Group C. However, in AF groups, Fir-
micutes dominated as the most prevalent phylum, with 
41% in Group B and 43% in Group D. Although Firmi-
cutes did not show significant differences among groups 
(P = 5.73E-02), the Firmicutes/Bacteroidetes ratio (F/B 
ratio) did (P = 1.83E-04). The F/B ratio was higher in 
AF groups (0.59 in Group A, 0.83 in Group C, 1.23 in 
Group B, and 2.11 in Group D). Additionally, the rela-
tive abundance of Verrucomicrobia exhibited significant 
differences (P = 3.00E-06). AF groups displayed relatively 
higher levels of Verrucomicrobia compared to control 
groups (8% in Group A, 8% in Group C, 14% in Group B, 
and 30% in Group D).

Table 2  Plasma amino acid profile of persistent atrial fibrillation 
patients and their control

Amino acid Control (n = 30) Atrial 
fibrillation 
(n = 30)

P

Alanine 134.2 ± 41.86 124.1 ± 59.3 0.448

Arginine 91.2 ± 50.6 80.1 ± 3.6 0.240

Asparagine 51.4 ± 12.5 48.3 ± 7.0 0.246

Aspartic acid 25.9 ± 3.9 25.4 ± 1.4 0.499

Citrulline 34.5 ± 2.0 34.3 ± 2.1 0.736

Cystine 43.8 ± 1.8 43.3 ± 0.4 0.177

Glutamic acid 25.7 ± 3.2 27.8 ± 2.5 0.008

Glycine 20.9 ± 23.8 5.7 ± 12.0 0.003

Histidine 61.4 ± 4.1 62.9 ± 4.2 0.160

Homocysteine 45.7 ± 0.1 45.8 ± 0.5 0.655

Isoleucine 84.8 ± 17.9 96.8 ± 17.9 0.014

Leucine 50.0 ± 5.5 50.2 ± 4.6 0.883

Lysine 44.3 ± 3.7 47.7 ± 3.6 0.001

Methionine 50.3 ± 1.6 51.4 ± 1.5 0.008

Phenylalanine 65.7 ± 7.0 68.3 ± 8.6 0.196

Proline 112.4 ± 23.1 105.0 ± 33.0 0.318

Serine 8.9 ± 4.5 10.4 ± 4.7 0.211

Threonine 38.3 ± 7.5 37.8 ± 7.2 0.817

Tryptophan 59.1 ± 6.5 60.9 ± 7.6 0.326

Tyrosine 62.8 ± 5.0 67.3 ± 6.0 0.002

Trans-4-Hydroxy-L-Proline 29.6 ± 2.2 29.9 ± 2.6 0.684

Valine 95.8 ± 19.3 98.8 ± 20.8 0.570
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Aged AF mice and adult AF mice gut microbiota pre-
sented distinct clusters in the non-metric multi-dimen-
sional scaling (NMDS) analysis (Fig. 6A), with significant 
differences being found in ANOSIM test (R = 0.494, 
P = 0.001). Different gut microbiota with taxonomic lev-
els from phylum to genus were presented in a taxonomic 
cladogram (LEfSe LDA score > 2 and P-value < 0.05), 
including 5 phyla, 8 classes, 10 orders, 21 families, and 43 
genera (Fig. 6B).

The relative abundance of the 10 most abundant taxa 
at the phylum and genus levels is shown in Fig. 6C, D. At 
phylum level, aged AF mice had significantly more Bac-
teroidetes (P = 1.37E-02), higher F/B ratio (P = 4.39E-02), 
and more Verrucomicrobia (P = 1.96E-03). At the genus 
level, aged AF mice had significantly more Akkerman-
sia (15% in Group B and 31% in Group D, P = 1.95E-03). 
Aged AF mice showed an increased enrichment level of 
AA metabolism in the KEGG pathway and an increased 
enrichment level of AA transport and metabolism in the 
COG pathway (Fig. 7, Additional file 8: Figure S8).

Correlation between altered metabolites and gut 
microbiota in aged AF mice
The 41 significantly different metabolites (OPLS-DA 
VIP > 1 and t-test P-value < 0.05) from untargeted metab-
olomics and 38 significantly different species at the genus 
level (LEfSe LDA > 2 and P-value < 0.05) from 16S rDNA 
amplicon sequencing analysis were obtained from adult 
AF and aged AF groups. The correlation between them 
was displayed as a hierarchical clustering heatmap (Addi-
tional file 9: Figure S9).

Discussion
Given that advanced age is a widely recognized risk fac-
tor for AF, healthy aging may impede AF progression. 
An understanding of mechanisms of age-related AF may 
provide novel biomarkers and therapeutic targets for AF 
management.

There is a growing awareness of the detrimental 
effects of AA disturbances observed in cardiovascular 
diseases [16]. Our study revealed AA metabolic profile 

Fig. 1  Association of plasma amino acids level and clinical indicators of patients. A Volcano plot of the different amino acids between persistent 
atrial fibrillation patients and control subjects (Student’s t-test, P < 0.05). B The distribution of feature amino acids screened by each machine 
learning method. The number of amino acids identified in each subset is represented in the histogram. C–D The association of plasma amino acids 
level and age of C control subjects and D persistent atrial fibrillation patients. E–F The association of plasma amino acids level and clinical indicators 
of E control subjects and F persistent atrial fibrillation patients. *P < 0.05 and **P < 0.01. BMI, body mass index. SBP, systolic blood pressure. DBP, 
diastolic blood pressure. FT3, free triiodothyronine. FT4, free thyroxine. TSH, thyroid-stimulating hormone. WBC, white blood cell. HGB, hemoglobin. 
RBC, red blood cell. PLT, platelets. ALT, alanine aminotransferase. AST, aspartate aminotransferase. ALB, albumin. Glu, blood glucose. BUN, blood 
urea nitrogen. Cre, creatinine. CK, creatine kinase. CK-MB, creatine kinase isoenzyme. LAD, left atrial diameter. RAD, right atrial diameter. LVEF, Left 
ventricular ejection fraction
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disturbances in age-related AF. Initially, plasma AA vari-
ations were detected between persistent AF patients and 
control subjects, and the correlation between AA levels 
and age differed. Then, we constructed the AF mouse 
model and we observed increased myocardial fibrosis, 
enlarged left atrium, and pronounced cardiac dysfunc-
tion in aged AF mice. Besides, we found myocardial AA 
and related metabolites associated with age-related AF, 
including Betaine, L-histidine, L-alanine, L-arginine, 

L-Pyroglutamic acid, and L-Citrulline. They had lower 
levels in aged AF mice compared with adult AF mice, and 
it cannot be solely attributed to the aging process, as sim-
ilar changes were not observed between adult control and 
aging control mice. Additionally, aged AF mice had less 
diverse gut microbiota, more severe gut dysbacteriosis, 
and predicted gut microbiota AA metabolic disturbance.

Not only did AF patients have elevated plasma glutamic 
acid levels, but AF mice also had elevated myocardial 

Fig. 2  Atrial fibrillation mouse model establishment. A Surface electrocardiogram of each group of mice, and the sequence from top to bottom 
was adult control (Group A), adult AF (Group B), aged control (Group C), and aged AF (Group D). The ECG of Group B and Group D mice showed 
the atrial fibrillation waveform. B Left atrial area detected by M-mode echocardiogram, and the sequence from left to right was Group A-D. Yellow 
dashed lines encircle the left atrium. C, D Representative images of Masson’s trichrome staining of the atrial area and measurements of the fibrosis 
area, and the sequence from left to right was Group A–D (n = 5 in each group), *P < 0.05; **P < 0.01. E Heart gross specimens and the sequence 
from left to right was Group A–D. Yellow dashed lines encircle the left atrium
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glutamic acid derivative, the pyroglutamic acid. Given 
that glutamic acid is one of the most abundant amino 
acids in the body, its metabolic versatility has sparked 
emerging interest in its role in cardiovascular diseases 
[34–36]. One of its crucial molecular mechanisms is 
the maintenance of glutathione levels. Glutathione, syn-
thesized from glutamate, cysteine, and glycine, under-
goes hydrolysis to yield pyroglutamic acid [37]. It was 
reported that AF patients had significantly lower left 
atrial glutathione levels, linked to decreased atrial con-
tractility and reduced L-type calcium current [38] in 
atrial myocytes [39].  The observed lower glycine levels 
in AF patients and lower glutathione in AF mice in our 
study suggested a potential disruption of the glutathione 
cycle during AF.

The myocardial levels of alanine and its associated 
metabolic pathways differed between aged AF and adult 
AF mice. Aged AF mice had lower alanine levels. Intrigu-
ingly, a negative correlation between alanine levels and 

age was observed in AF patients. Alanine supplementa-
tion has been documented to improve fatigue, increase 
strength, and enhance cognitive function in the elderly 
[40, 41]. These health benefits of alanine for the elderly 
suggest its plausible benefits in age-related AF.

Arginine (Arg) is oxidized to nitric oxide (NO) and 
L-citrulline (Cit) by nitric oxide synthase (NOS). The 
implications of the NOS-NO pathway in cardiovascular 
diseases have been extensively studied [42, 43]. Dimin-
ished levels of Arg, which serves as a precursor of NO, 
have been associated with an increased risk of major 
adverse cardiovascular events [44]. The observed reduc-
tion of Arg and Cit in our study implied defective argi-
nine metabolism and reduced availability of NO in aged 
AF. Moreover, Arg administration and co-administration 
of Arg and Cit enhanced NO availability and rectified 
diverse metabolic disorders [45–47]. Our findings sug-
gested that combined supplementation of Arg and Cit 
may be beneficial for age-related AF.

Fig. 3  Myocardial untargeted metabolomics and amino acids related metabolites profiles among four mice groups. A, B Principal component 
analysis (PCA) score plots of adult control (Group A, Aadcon), adult AF (Group B, BadAF), aged control (Group C, Cagcon), and aged AF (Group D, 
DagAF) in A positive ion mode and B negative ion mode. C Hierarchical clustering heatmap of amino acids and related metabolites profile of four 
groups in positive ion mode. n = 10 in each group
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Fig. 4  Myocardial untargeted metabolomics between adult AF (Group B, BadAF) and aged AF (Group D, DagAF) mice. A–B Volcano plot 
of the different metabolites in univariate analysis (FC > 1.5 or < 0.67, and t-test P-value < 0.05) in A positive ion mode and B negative ion mode. 
C–D Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot in C positive ion mode and D negative ion mode. E Hierarchical 
clustering heatmap of metabolites with significant differences (OPLS-DA VIP value > 1 and t-test P-value < 0.05, with qualitative names) in positive 
ion mode. F Top 20 enriched KEGG pathways of the significantly different metabolites in positive ion mode. n = 10 in each group

Fig. 5  Gut microbiota diversity and relative abundance among four mice groups. A Gut microbiota alpha diversity was different among groups 
based on the Shannon index (P = 8.00E-05). B Gut microbiota beta diversity was different among groups based on Weighted Unifrac distance 
(P = 3.30E-08). C Pareto chart illustrating the relative abundance of the top 10 gut microbiota at the phylum level among four groups. Bars are 
arranged in ascending order of frequency. The Pareto line indicates cumulative percentage, highlighting that the top 3 gut microbiota contribute 
to 96.17% of the total abundance. Group A: adult control, Group B: adult AF, Group C: aged control, and Group aged AF, n = 10 in each group
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Previous genomic and physiological studies demon-
strated that gut microbiota has specialized enzymes 
that utilize AAs [48]. Gut microbial proteolysis undi-
gested protein and peptides and produced various 
microbial metabolites [49]. Some of these bacterial 
metabolites are then transported to portal blood, where 
they exert diverse physiological effects on the circula-
tion and peripheral organs [50]. Metabolic disorders 
are associated with gut microbiota composition and 
function, and microbiota-derived metabolites, includ-
ing bile acids, short-chain fatty acids, BCAAs, trypto-
phan, and so on [51, 52]. Previous studies observed that 
disturbed gut microbiota was associated with the onset 
of AF [53], the type of AF [54], and the duration of AF 
[55]. Our finding not only found the dysbacteriosis in 
age-related AF but also suggested a disruption of gut 
microbiota AA metabolism.

Our studies have certain limitations. Firstly, the 
observed AA disturbances in age-related AF can only 

suggest a correlation, but not causality. Their correlation 
suggested AA disturbances may serve as possible bio-
markers of AF, and restoring AA homeostasis as an AF 
intervention needs to be verified in subsequent research.

Secondly, the absolute numerical differences of AAs 
between AF patients and counterparts were not large and 
their AUC value prompts moderate diagnostic efficacy. 
This observation may be attributed to the relatively lim-
ited number and the heightened metabolic heterogeneity 
of enrolled patients. Thus, further research within larger 
cohorts stratified by age, gender, AF duration, and meta-
bolic status is still expected to deliver more clear results.

Thirdly, plasma samples may not capture altered AA 
metabolites in the atrial tissue of AF patients. We ana-
lyzed myocardial tissue from AF mouse model  instead. 
Notably, the inherent complexity of metabolomic data, 
along with variations between different organisms and 
tissues, limits us to identifying a large number of con-
sistent metabolic signatures. However, a definitive 

Fig. 6  Gut microbiota composition of adult AF (Group B, BadAF) and aged AF (Group D, DagAF) mice. A Non-metric multi-dimensional scaling 
(NMDS) and ANOSIM test (the box within NMDA plot). B The taxonomic cladogram plotted from LEfSe analysis. The red and green nodes represent 
species with significantly more abundance (LEfSe LDA score > 2 and P-value < 0.05) in Group B and Group D, respectively. C-D The community 
composition of the top 10 representative species and their relative abundance at the phylum level (C) and the genus level (D). n = 10 in each group
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conclusion can be drawn: substantial disturbances of AA 
metabolism exist in both AF patients and AF mice.

Despite these limitations, our research also pos-
sesses several strengths. Firstly, we provide a compre-
hensive network of AA disturbance in age-related AF 
from multiple dimensions, including plasma, myocar-
dium, and gut microbiota. Secondly, we found plasma 
AA disturbance in AF patients. Being easily detect-
able, plasma AAs may serve as highly feasible AF bio-
markers. Thirdly, we constructed the AF mouse model 
and identified various AA disturbances related to AF. 
The health benefits of restoring these AAs have been 
proved in previous studies. Considering the involve-
ment of AAs in aging and cardiovascular diseases, it is 
worth contemplating the potential benefits of restoring 
AA homeostasis in age-related AF.

Conclusions
This study provided a comprehensive network of AA 
disturbances in age-related AF from multiple dimen-
sions, including plasma, myocardium, and gut microbi-
ota. Disturbances of AAs may serve as AF biomarkers, 
and restoring their homeostasis may have potential 
benefits for the management of age-related AF.
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Additional file 1: Figure S1. Receiver operating characteristic (ROC) 
curve of altered plasma amino acids. The area under the ROC curve (AUC) 
and P-value for each amino acid were shown.

Additional file 2: Figure S2. Feature amino acids identification by 
machine learning methods. (A-B) LASSO screening identified 5 feature 
amino acids (glutamic acid, tyrosine, methionine, asparagine, and proline). 
(C) SVM-RFE screening identified 7 feature amino acids (glutamic acid, 
methionine, lysine, histidine, proline, alanine, and asparagine). (D-E) 

Fig. 7  KEGG functional predictive analysis of gut microbiota between adult AF (Group B) and aged AF (Group D) mice conducted by STAMP 
differential analysis
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Random Forest model identified 6 feature amino acids sorted by mean 
decrease accuracy and mean decrease Gini index (glutamic acid, methio-
nine, lysine, alanine, proline, and histidine). (F) 10-fold cross-validation 
of XGBoost to determine the optimal number of rounds. (G) XGBoost 
algorithm identified 4 important amino acids (glutamic acid, methio-
nine, alanine, and lysine). LASSO, least absolute shrinkage and selection 
operator. SVM-RFE, Support Vector Machine-Recursive Feature Elimination. 
XGBoost, Extreme Gradient Boosting.

Additional file 3: Figure S3. Mice cardiac function evaluated by transtho-
racic M‐mode echocardiogram. (A-D) The M‐mode echocardiography of 
Group A (A), Group B (B), Group C (C), and Group D (D). (E-H) The M‐mode 
echocardiography parameters LVIDd, LVIDs, FS (%), and LVEF (%). n = 10 
in each group. *P < 0.05; **P < 0.01; ***P < 0.001. LVIDd, left ventricular 
internal dimension in diastole. LVIDs, left ventricular internal dimension in 
systole. FS, fractional shortening. LVEF, Left ventricular ejection fraction.

Additional file 4: Figure S4. Hierarchical clustering heatmap of myo-
cardium metabolites with significant differences between adult control 
(Group A, Aadcon) and adult AF (Group B, BadAF) mice. (A) in positive ion 
mode. (B) in negative ion mode. n = 10 in each group

Additional file 5: Figure S5. Hierarchical clustering heatmap of metabo-
lites with significant differences between aged control (Group C, Cagcon) 
and aged AF (Group D) mice. (A) in positive ion mode. (B) in negative ion 
mode. n = 10 in each group

Additional file 6: Figure S6. Hierarchical clustering heatmap of metabo-
lites with significant differences between adult control (Group A, Aadcon) 
and aged control (Group C, Cagcon) mice. (A) in positive ion mode. (B) in 
negative ion mode. n = 10 in each group

Additional file 7: Figure S7. Hierarchical clustering heatmap of metabo-
lites with significant differences between adult AF (Group B, BadAF) and 
aged AF (Group D, DagAF) mice in negative ion mode

Additional file 8: Figure S8. COG functional predictive analysis of gut 
microbiota between adult AF (Group B) and aged AF (Group D) mice 
conducted by STAMP differential analysis

Additional file 9: Figure S9. Correlation analysis between significantly 
different gut microbial genera and significantly different myocardial 
metabolites in adult AF (Group B) and aged AF (Group D) mice. In a hier-
archical clustering heatmap, each row represents a significantly different 
gut microbial genera (LEfSe LDA > 2 and P-value < 0.05) from 16S rDNA 
amplicon sequencing analysis, and each column represents a significantly 
different metabolite (OPLS-DA VIP > 1 and t-test P-value < 0.05) from 
untargeted metabolomics. Positive correlations (correlation coefficient r 
> 0) are depicted in red, while negative correlations (r < 0) are depicted in 
blue. The P-value reflects the level of significance of the correlation. *P < 
0.05, **P < 0.01 and ***P < 0.001.

Additional file 10. Supplementary tables.
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