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Pathogenomics for accurate diagnosis, 
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Abstract 

The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, 
leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to uni-
modal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. 
Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphologi-
cal information from histopathological imaging, and codified clinical data enable the discovery of new multimodal 
cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our 
opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods 
in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, 
and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.
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Background
Pathogenomics is an innovative imaging analysis method 
that leverages invasive techniques to draw correlations 
between genomics with pathological image features. This 
approach provides a more profound comprehension of 
tumor biology and allows for the capture of the inher-
ent heterogeneity of tumors. The ultimate objective of 
pathogenomics is to develop specific imaging biomarkers 
that combine genotypic and phenotypic metrics.

With an estimated 19.3 million new cancer cases and 
nearly 10 million cancer deaths occurred worldwide in 
2020 [1], innovation in cancer diagnosis and treatment 

is desperately needed. Cancer diagnosis and prediction 
of treatment and prognosis often harness heterogene-
ous data resources, including whole slide images (WSI), 
molecular profiles, and clinical data such as patient age 
and comorbidities [2, 3]. Several recent studies have 
illustrated that patterns found in high-dimensional, mul-
timodal data can improve prognostication of disease 
invasiveness, stratification, and patient outcomes com-
pared to unimodal data [2, 4–7].

As the field of anatomical pathology moves from slides 
to digitized whole slide images, and the breakthrough 
of next-generation sequencing (NGS), alongside rapid 
progress via deep learning and other advanced machine 
learning methods has been made in each of individual 
modalities, major unsolved questions about how to take 
advantage of multimodal data for integration and mine 
useful information remain. Thereby, this is a critical 
opportunity to develop joint histopathology-genomics 
analysis based on artificial intelligence (AI) approaches 
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that leverage phenotypic and genotypic information in an 
integrated manner, that is, pathogenomics.

At present, the analysis of histopathological imaging 
is still mainly in the stage of manual way [2, 8–10], sup-
plemented by computer quantitative analysis. Through 
great progress made by quantitative analysis at this stage, 
the analysis mainly studies a few common features, such 
as morphological features, color and texture features, 
shape features, etc., while use single feature cannot 
cover the complexity and variability of tumors, leaving 
an urgent problem to be solved in quantitative analysis 
of computational pathology [11]. Subjective and qualita-
tive histopathology-based image analysis of the tumor 
microenvironment (TME), alongside with quantitative 
examination of omic analysis, especially genomics, is 
the standard-of-care for most cancers in modern clini-
cal practice [3, 5, 6, 12–15]. Tumor microenvironment is 
the complex cellular environment that mainly composed 
of blood vessels, extracellular matrix (ECM), immune 
cells, fibroblasts, inflammatory cells, and various signal-
ing molecules around the tumor [16]. Although histologi-
cal tissue analysis provides significant morphological and 
spatial information on the TMI, with different inter- and 
intra-observer variability qualitatively examined by expe-
rienced pathologists, interpretation at the histological 
level alone can hardly take advantage of abundant pheno-
typic information that has been shown to correlate with 
prognosis.

Genomic analysis focuses on monitoring cellular activ-
ity at the molecular level, compared to pathology quan-
tifies disease phenotypes. Current modern sequencing 
technologies, such as single-cell sequencing, can parse 
the genomic information of a single cell in tumor speci-
mens, while spatially resolved transcriptomics and 
multipath immunofluorescence technologies can simul-
taneously parse histopathological morphology and 
gene expression in space [17–21]. Bulk sequencing can 
reveal the presence and quantity of all genes and TME 
in tumors within a given time, to help us understand the 
molecular discrepancy between disease phenotypes and 
responses to treatment. Genomic analysis of tissue biop-
sies can provide quantitative information on genome 
expression and alterations, including gene mutations, 
copy number changes (CNV), and DNA methylation, but 
it is challenging to recognize tumor-induced genotype 
measurements and alterations via no-tumor entities such 
as normal cells.

Therefore, the emergence of pathogenomics provides 
an exciting opportunity to combine morphological infor-
mation from histopathology and molecular informa-
tion from genomic profiles to better quantify the tumor 
microenvironment and harness advanced machine 
learning algorithms for the discovery of potential 

histopathology-genomics based biomarkers and pre-
cision oncology in accurate diagnosis, treatment, and 
prognosis prediction. To exemplify this premise of 
pathogenomics, we will focus on three major modali-
ties in cancer data: histopathology, genomics profile, and 
clinical information (Fig. 1).

The integration of histopathological phenotypes and 
genotypes could help us:

(1)	 Understand context-aware linkage between tissue 
architectures and molecular properties;

(2)	 Capture more “understandable” spatial features 
through systematic and quantitative analysis;

(3)	 Discover novel diagnostic and prognostic image-
omics-based biomarkers;

(4)	 Gain complimentary information for visualizing 
pathological and molecular context of cancer;

(5)	 Develop multimodal fusion models for prognostica-
tion of survival situation, gene mutation signatures, 
patient stratification and treatment response.

In this work, we provide a brief review of representative 
works that focus on integrating pathomics and genomics 
for cancer diagnosis, treatment, and prognosis, includ-
ing the correlation of pathomics and genomics, fusion 
of pathomics and genomics. We also present challenges, 
potential opportunities, and perspectives for future work. 
An overview of the fusion of pathomics and genomics 
analysis is shown in Fig. 1.

Correlation between pathological and genomic 
profile of cancer
Correlating pathological morphology with large-scale 
genomic analysis has become a burgeoning field of 
research in recent years [8, 22]. Given that most WSIs 
currently lack pixel-level annotations, it can be verified 
to a certain extent whether it is consistent with known 
biological mechanisms by correlating image features with 
molecular data. For instance, to explore whether image 
immune features are related to immune regulatory genes, 
to further validate whether the image features obtained 
by machine learning algorithms are reliable to replace 
the doctor’s manual estimation in the future. Moreover, 
the association analysis of image features and molecular 
expression patterns can bring new inspiration to cancer 
biology research and help to find potential new biomark-
ers [23].

Whole slide images and computational pathology
Whole slide images offer a wealth of pathological infor-
mation, including details about nucleus shape, texture, 
global structure, local structure, collagen pattern, and 
tumor-infiltrating lymphocytes (TILs) pattern. However, 
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the high complexity of WSIs, due to their large size (a 
resolution of 100k × 100k is common), presence of color 
information (hematoxylin and eosin and immunohis-
tochemistry), no apparent anatomical orientation as in 
radiology, availability of information at multiple scales 
(e.g., 4×, 20×), and multiple z-stack levels [11], make it 
challenging for human readers to precisely extract such 
visual information. Fortunately, the advent of artificial 
intelligence and machine learning tools in digital pathol-
ogy enable mining histopathological morphometric 
phenotypes and might, ultimately, improve precision 
oncology.

Stained tissue samples, observed under an optical 
microscope, provide detailed insights into the morpho-
logical distribution of cells in different biological states, 
as well as the composition of the tumor microenviron-
ment (TME). Whole slide image allows clinicians to 
analyze and evaluate these varied aspects of the TME, 
such as tissues and cells of cancer patients. This analy-
sis can help identify the benign or malignant nature of 
cancer, classify the tumor grade, extent of invasion, and 
prognosis, leading to a qualitative or semi-quantitative 
diagnosis. As a result, WSI is currently considered the 
“gold standard” for clinical diagnosis of cancer. How-
ever, given the high self-heterogeneity of tumors, manual 
estimation on images can be subjective and its accuracy 
can be affected by the pathologist’s own clinical experi-
ence and working conditions. This can lead to inevitable 
human bias, resulting in disagreement in diagnosis or 

even misdiagnosis. In recent years, with the rapid devel-
opment of machine learning, more and more studies 
have started applying advanced algorithms to WSIs to 
automatically identify and quantitatively analyze impor-
tant tissues and cells in images, thereby assisting clinical 
evaluation and related computational pathology stud-
ies. Colorectal [24–26], breast [27, 28], gastrointestinal 
[29, 30], prostate [31, 32], and lung cancers [33–35] can 
be retrieved by automatic classification or quantitative 
analysis in advanced machine learning algorithms using 
multicenter, large cohort WSI data.

Computational pathology reveals prognostication of gene 
mutations, cancer subtypes, stratification, and prognosis
The causal and inferential relationships between gene 
expression and pathology are indeed crucial in the dis-
covery of biomarkers. Hematoxylin–eosin (H&E)-stained 
WSIs and immunohistochemistry (IHC) data have been 
leveraged to predict molecular features of tumors and to 
discover new prognostic associations with clinical out-
comes. We refer readers to several well-chosen extraordi-
nary reviews in these areas [2, 8, 11, 36].

One notable multicenter example in pan-cancer 
showed that deep residual learning (Resnet 18) can pre-
dict microsatellite instability (MSI) status directly from 
H&E histology [37, 38], suggested a convenient and effec-
tive way to identify biomarker for response to immune 
checkpoint blockade (ICB). Similarly, deep-learning 
models can assist pathologists in the detection of cancer 
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Fig. 1  Example data modalities for multimodal integration include clinical, pathological, and genomic profiles. Submodels extract unimodal 
features across each data modality. Then, a multimodal integration step generates intermodal features—a tensor modal fusion network. And final 
sub-models infer multi-task learning in patient outcomes and clinical prognostication, including patient stratification and molecular subtyping, 
survival prediction and treatment response, discovery of key features and novel biomarkers. (Created with BioRender.com.) WSI whole slide image, 
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subtype or gene mutations [24, 33]. However, these deep 
learning methods rely heavily on large training cohorts 
and suffer from poor interpretability analysis, thousands 
of hand-crafted features or manual pixel-level annota-
tions are often needed to achieve excellent, generalizable 
performance depending on task and data complexity. 
Harnessing different data modalities at a large clinical-
grade scale often requires reducing this burden of time-
consuming annotation, especially in multimodal tasks.

Interpretable quantitative analysis of histological 
images can also be performed using weakly supervised 
learning without tissue annotation, identifying biologi-
cal features such as TILs and other properties of the TME 
and their correlation with molecular features. A recent 
study found that HE2RNA [39], a model based on the 
integration of multiple data modes, can be trained to sys-
tematically predict RNA-Seq profiles from whole-slide 
images alone, without expert annotation. The proposed 
model HE2RNA can be applied for clinical diagnostic 
purposes such as the identification of tumors with MSI. 
And other studies [33, 40–42] have linked biologically 
interpretable features with clinical outcomes, which 
have revealed gene mutations, tumor composition, 

and prognosis. Table  1 summarizes the representative 
research works that relate to pathomics and genomics 
correlation.

Molecular signatures are the most intuitive measure-
ments of response to therapeutic interventions, while 
survival analysis for cancer prognosis prediction is a 
standard approach for biomarker discovery, stratifica-
tion of patients into different treatment groups, and 
therapeutic response prediction [43]. Many studies have 
explored the relationship between pathological pheno-
typic characteristics and cancer prognosis prediction. 
The histopathological boundary morphology and spa-
tial distribution morphological characteristics extracted 
based on different machine learning models have pre-
dictive effects on cancer grading and prognosis. Recent 
work has incorporated deep learning into survival anal-
ysis, with common covariates including CNV, mutation 
status, and RNA sequencing (RNA-Seq) expression [44, 
45], to examine the relationship between gene signa-
tures and survival outcomes. Nevertheless, these survival 
analysis for cancer outcome prediction is mainly based 
on genomic profiles, lack of leveraging heterogeneous 
information from the inherent phenotypic data sources, 

Table 1  Overview of research works on correlating pathomics with genomics

DL deep learning, HGSOC high-grade serous ovarian cancer, CT computed tomography, CE-CT contrast-enhanced computed tomography, BRCA​ breast cancer, LUAD 
lung adenocarcinoma, STAD stomach cancer, LUSC lung squamous cell carcinoma, CRC​ colorectal cancer, KIRC kidney clear cell carcinoma, TNBC triple-negative breast 
cancer, CNN convolutional neural network, WSI whole slide image, KEGG Kyoto Encyclopedia of Genes and Genomes, GO Gene Ontology, C-index concordance index, 
NGS next generation sequencing, RF random forest, MSI microsatellite, AUC​ area under curves, mRNA messenger-RNA, miRNA micro-RNA, CAMS the Chinese Academy 
of Medical Sciences, China, NLST the National Lung Screening Trial, SPORE the University of Texas Special Program of Research Excellence, LR logistic regression, SVM 
support vector machines, RF ransom forest, TCGA​ The Cancer Genome Atlas, COAD colon adenocarcinoma, READ rectum adenocarcinoma, GCN graph convolutional 
network, KIRC kidney renal clear cell carcinoma, ML machine learning

Tumor type Models References Data modalities Performance

HGSOC ResNet-18, Cox Kevin et al. [41] WSI, CT, CE-CT, and NGS Survival prediction, C-index: 0.61

BRCA and LUAD Inception v3 Alona et al. [42] WSI, RNA, and miRNA, miR-17 status prediction, AUC: 0.95

Pan-cancer Shufflenet, densenet, inception, 
and resnet

Jakob et al. [14] WSI and CNV MSI status prediction, AUC: 0.89

LUAD ResNet18, GO, and KEGG Yi et al. [53] WSI, mRNA, and clinical character-
istics

TMB status prediction, AUC: 0.64

Pan-cancer HE2RNA Benoît et al. [39] WSI and RNA-Seq The model could predict RNA-Seq 
profiles from WSIs

STAD ResNet18, AlexNet, vgg19, 
squeezenet

Jakob et al. [38] WSI, MSI and clinical information Shown that deep residual learning 
can predict MSI directly from H&E 
histology

LUAD and LUSC Inception v3 Nicolas et al. [33] WSI and gene mutation data 3-Class classification performance 
reached AUC: 0.97; gene mutations 
AUCs from 0.733 to 0.856

Pan-cancer Deep transfer learning, inception 
V4, COX

Yu et al. [13] WSI, genomics, transcriptomics 
and survival data

Shown that deep learning could 
characterize the molecular bias 
of tumor pathology

COAD and READ GCN Ding et al. [54] WSI and gene mutation data Shown that GCN models could pre-
dict molecular profile from WSIs

KIRC LR, RF, SVM, Adaboost Zheng et al. [55] WSI and DNA methylation Shown that ML algorithms can 
associate the DNA methylation 
with histological features



Page 5 of 14Feng et al. Journal of Translational Medicine          (2024) 22:131 	

including diagnostic slides, IHC slides, which has known 
significant prognostic value.

Therefore, some studies further combine gene expres-
sion data at the molecular level with histopathological 
features to improve the accuracy of prognosis predic-
tion. For instance, Savage et al. [46] found that combining 
gene expression, copy number variation, and pathologi-
cal image features could improve chemotherapy efficacy 
and prognosis prediction in breast cancer. Cheng et  al. 
[47] found that combining morphological features of 
cells in pathological images with feature genes of func-
tional genetic data can lead to better prognosis predic-
tion of renal cancer than using image data or genetic 
data alone. Mobadersany et al. [48] first proposed a deep 
learning-based framework to predict the prognostic abil-
ity of pathological image features, and then extended this 
model to unify image features with genomic biomarker 
data to predict glioma prognosis.

Correlation between histopathological and genomic 
profiles found that patients have a better prediction 
of prognosis [30, 49–51], but further refinement is 
needed to better address clinically meaningful sub-
groups. Emerging spatial genomics techniques [7, 15, 

18, 52] and complementary clinical and imaging modali-
ties are opportunities to enrich these data and refine 
prognostication.

Fusion of histology and genomic profile of cancer
Complementary information from combining these 
various modalities, including the morphological and 
spatial information from digital pathology, and the 
molecular changes underpinning them, and the corre-
sponding structured pathology reports, is already accel-
erating biological discovery and applied multimodal 
tools research in cancer. We suggest that such unimodal 
models across histopathology, molecular, and clinical 
domains discussed above will become the building blocks 
of integrated multimodal models for pathogenomics. The 
design choices for multimodal models in pathogenomics 
are shown in Fig. 2.

Understanding the histological context of genomic 
data is indeed essential for a comprehensive understand-
ing of a tumor’s clinical behavior. Given the intra-tumor 
heterogeneity, the expression level of certain genes may 
vary significantly across different regions within the same 
tumor. Besides, the diagnostic slide of tissue samples 

Fig. 2  Fusion strategies for multimodal models with genomic profiles, histopathological images, and clinical information. Solid arrows denote 
stages with learnable parameters (linear or otherwise), dashed arrows denote stages without learnable parameters, and dashed and dotted arrows 
denote the options for learnable parameters, depending on the model architecture
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provides a global view of tumor morphology, and thus 
pathomic analysis could alleviate the sampling issues 
raised in genomic analysis. However, relying solely on 
pathological features or genomic expressions may not be 
able to provide biological explanations for some clinical 
behaviors. Therefore, many researchers have attempted 
to combine these two data modalities to create more 
accurate and reasonable diagnostic companion tools.

Multimodal fusion approaches
The increasing availability of biomedical heterogeneous 
data modalities, such as electrical health records, medical 
images, and multi-omics sequences, has paved the way 
for the development of multimodal intelligence solutions 
that capture the complexity of human health and disease 
[56, 57].

These solutions utilize model-agnostic fusion methods, 
which means that multimodal fusion does not directly 
rely on specific machine learning methods [27]. Model-
agnostic approaches can be divided into early fusion, late 
fusion, and hybrid fusion [58].

Early fusion
Early Fusion refers to the process of combining the origi-
nal data of different modes or the learned private features 
of each mode representation before they are fed into a 
machine learning model. Since early fusion is feature-
based, it can ensure that low-dimensional information, 
such as spatial features of each modality, is preserved 
during fusion. This method is suitable for each modal-
ity that does not have complete information to complete 
the target task independently. In other words, the fusion 
decision in early fusion is directly made based on the 
original data or the learned private features of each mode 
representation. This fusion method can be expressed as 
Eq. (1):

where xi denotes i-th data source, f (xi) represents the 
feature extracted by the model, F  represents the feature 
fusion method, and D represents the decision method 
made by the model based on the fusion feature.

Late fusion
In late fusion, each modality’s data is processed sepa-
rately and the results are then combined to make a final 
decision. This approach allows each modality to focus 
on the features that are most relevant to it, which can 
improve the accuracy of the final decision. However, it 
requires that each individual model be highly accurate, 
as the final prediction is dependent on the accuracy of all 
individual models. This fusion method can be expressed 
as Eqs. (2) and (3):

(1)y = D(F(x1, x2, . . . , xn)),

where xi denotes i-th data source, f (xi) represents the 
feature extracted by the model, d(xi) represents the deci-
sion judgment made by the model Mi , and D represents 
the comprehensive decision method.

The commonly used comprehensive decision-mak-
ing methods in late fusion include: (1) average fusion: 
the final prediction is made by averaging the confi-
dence score of the output of the multimodal model; (2) 
weighted fusion: the final decision is made by calculat-
ing the comprehensive confidence score by weighting the 
output confidence of the multimodal model [59].

Hybrid fusion
The hybrid fusion method can leverage the strengths of 
both early and late fusion, potentially leading to improved 
performance. First, through Model1, the n modal entity 
objects (x1, x2, . . . , xn ) are taken as input to obtain the 
preliminary decision result, and then the decision result 
is integrated with the decision result of other unimodal 
models include k − n-th modal to obtain the final pre-
diction output. This fusion method can be expressed as 
Eq. (3) and (4):

where xi denotes i-th data source, f (xi) represents the 
feature extracted by the model, d(xi) represents the deci-
sion judgment made by the model Mi , and D represents 
the comprehensive decision method.

The foreland of methodology and application 
for pathogenomics integration
Prognosis refers to the prospect of recovery as antici-
pated from the usual course of disease or peculiarities 
of the case, such as the probability of the patient’s tumor 
recurrence, distant metastasis, or death. Risk stratifica-
tion can be accomplished using in the tumor, nodes, and 
metastases (TNM) staging system, molecular features 
or clinical variables. However, ameliorating prognos-
tic insight is an active area of research with frontiers in 
survival modeling, including multimodal and pan-can-
cer approaches generally. Table  2 gives an overview of 
research works that harness pathomics and genomics for 
multimodal fusion to apply in clinical prediction tasks.

The main goal of multimodal fusion technology is to 
narrow the distribution gap in semantic subspace while 
maintaining the integrity of modal-specific semantics. 

(2)y = D(d(x1), d(x2), . . . , d(xn)),

(3)d(xi) = Mi

(

f (xi)
)

,

(4)y = D(d(x1, x2, . . . , xn), d(xn+1), . . . , d(xk)),

(5)d(xi) = Mi

(

f (xi)
)

,
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Meanwhile, the key of multimodal fusion architecture is 
to implement feature concatenation. One of prevailing 
multimodal learning applications is based on Autoen-
coder (AE) models [60], providing DL models with 
capabilities to integrate different data modalities into a 
single end-to-end optimized model [61]. AE architecture 
usually starts with encoding each input modality into a 
representation vector of lower dimension, followed by 
a feature combination step to aggregate these vectors 
together, which comprises an encoder and a decoder 
working in tandem [62]. For instance, Tan et  al. [15] 
developed SpaCell based on AE models to integrate mil-
lions of pixel intensity values with thousands of gene 
expression measurements from spatially barcoded spots 
in pathological tissue. This approach showed better per-
formance than unimodal method alone.

Feature vector concatenation is also a common 
straightforward strategy for integrating pathomics and 
genomics [48, 63–65]. Shao [66] proposed an ordinal 
multi-modal feature selection (OMMFS) method that 
identified important features from each modality with 
the consideration of the intrinsic relationship between 
modalities. Chen [5] introduced a sophisticated end-
to-end integrated late fusion framework for fusing the 
learned deep features from histology images, at patch-
level and cell graph-level, and learned genomic features 

from genomic profiles. Pairwise feature interactions 
across modalities by taking the Kronecker product of 
unimodal feature representations and gating attention 
mechanism, were used to construct prognostic mod-
els for glioma and Clear Cell Renal Cell Carcinoma 
(CCRCC). Cheerla [63] constructed a deep learning-
based pan-cancer model with auto encoder to exact 
four data modalities (gene expression, miRNA data, 
clinical data, and WSI) into a single feature vector for 
each patient, handing missing data through a resilient, 
multimodal dropout method, to predict survival of 
patients. These studies above showed combination of 
WSI and genomic data and found that the model per-
formance outperformed than unimodal, while survival 
model is also suitable for computational modeling at 
the pan-cancer level. Wulczyn et  al. [67] trained sur-
vival models for 10 cancer types and evaluated the pre-
dictive performance of their model in each cancer type. 
Vale-silva et al. [51] trained pan-cancer and multimodal 
models across 33 cancer types. The current consen-
sus seems to be that histopathology-based feature can 
facilitate survival patterns by using genomic or clinical 
variables. However, the ultimate application in clini-
cal setting may depend heavily on the selective image 
features, model type and well-curated datasets, among 
other factors.

Table 2  Summarizes the representative multimodal fusion works that combine pathomics and genomics for better clinical prediction 
tasks

DL deep learning, PRAD prostate cancer, BRCA​ breast cancer, GBM glioblastoma, ER-BC estrogen receptor-positive breast cancer, RNA-seq RNA-sequencing, CNVs copy 
number variations, WSI whole slide image, MSI microsatellite, AUC​ the area under curves, mRNA messenger-RNA, miRNA micro-RNA, ATAC-seq assay for transposase-
accessible chromatin using sequencing, TCGA​ The Cancer Genome Atlas, TCIA The Cancer Imaging Archive, GDC Genomic Data Commons portal, C-index concordance 
index, PCA principal components analysis, KIRC kidney renal clear cell carcinoma, LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma

Tumor type Models References Data modality Performance

Pan-cancer Resnet-50; direct fusion on patch-
level

Schmauch et al. [39] RNA-seq and WSI MSI status prediction, AUC: 0.81 
(RNA + WSI)

PRAD Resnet-50; autoencoder fusion 
in combined late space

Tan et al. [15] RNA-seq and WSI Malignant/benign tissue recogni-
tion, AUC: 0.74 (RNA + WSI)

BRCA​ DenseNet-121; direct fusion 
on patch-level

He et al. [7] RNA-seq and WSI Subtype prediction, AUC: 0.83 ± 0.05 
(RNA + WSI)

KIRC Customized architecture; multi-
variate feature selection

Ning et al. [82] RNA-seq and WSI Survival prediction, C-index:0.79 
(0.73–0.86) (RNA + WSI)

KIRC, GBM VGG19; multimodal tensor fusion Chen et al. [5] RNA-seq, CNV, gene mutation 
and WSI

Survival prediction, KIRC C-index: 
0.72 ± 0.031 (RNA + WSI); GBM 
C-index: 0.82 ± 0.010 (RNA + WSI)

Pan-cancer SqueezeNet; unsupervised com-
pression in a single feature vector

Cheerla et al. [63] Clinical data, WSI, miRNA 
and mRNA

Survival prediction, C-index: 0.78 
(miRNA + mRNA + WSI)

ER-BC ResNet-101; canonical correction 
analysis

Xu et al. [83] RNA-seq and WSI Cancer-specific prediction, P-value 
7.23e−06 (gene + WSI)

GBM Customized architecture; two-
stage feature aggregation

Hao et al. [84] RNA-seq and WSI Survival prediction, C-index: 
0.70 ± 0.029 (RNA + WSI)

LIHC Two-stage feature aggregation Zhan et al. [85] WSI and RNA-seq Survival prediction, C-index: 0.75 
(RNA + WSI)

KIRC, LIHC, LUAD PCA; shared representation learn-
ing

Ning et al. [86] WSI and RNA-seq Survival prediction, C-index: 
0.658–0.685 (WSI + RNA)
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Deep learning approaches could capture different 
perspectives of tumor morphology, but for a success-
ful model to translate into new insights, it is critical to 
disambiguate tissue types to comprehend model predic-
tions. Tissue type area ratio [30] and connectivity [68] 
will affect the final prediction results. The morphology of 
the intratumor stroma may be a stronger prognostic indi-
cator than the tumor itself [69, 70]. Furthermore, the loss 
function adapted to the correct checking nature of the 
survival data outperforms a single binary classifier. How-
ever, multi-task approaches that combine multiple binary 
classifiers or survival loss with binary classifiers may yield 
better risk stratification.

In general, the studies discussed above demonstrate 
that multimodal fusion strategies with histopathologi-
cal images and genomic profiles improve clinical predic-
tion and patient stratification over digital pathology and 
molecular methods alone. However, the improvements 
observed in these early studies ought to be confirmed 
by adequate statistical analysis and external validation. 
Further experiments are indispensable to demonstrate 
the performance of generalizability and robustness to 
apply these approaches in real clinical settings. As for 
transcriptomic studies, much higher sample sizes are 
needed to make broader conclusions from the experi-
mental reports. Besides, large language models (LLMs) 
[71, 72] have exhibited exceptional performance in the 
field of natural language processing, various general 
models similar to ChatGPT [71] have been developed 
in multi-omics tasks, such as scBERT [73], Geneformer 
[74], SIMBA [75] and scDesign3 [76], which can realize 
cell type annotation, network dynamics predictions, gene 
regulation, single cell simulation, etc. generic tasks in 
genomics. There is also work on segment anything model 
(SAM) [77]-based general tools for segmenting medical 
images [78] in clinical diagnosis. The latest research is 
that MI-zero [79] developed by Mahmood lab to realize 
the general classification of pathological images and Clin-
icalGPT [80] developed by BUPT and unified multimodal 
transformer-based models [81] related to general medi-
cal diagnosis. However, there is currently no overarching 
LLM for pathogenomics, indicating the great opportuni-
ties for future growth in this field.

Challenges and opportunities in clinical adoption
In summary, the application of artificial intelligence in 
pathogenomics has demonstrated exceptional capa-
bilities in the prediction of gene mutations, cancer sub-
types, stratification, and prognosis. This has significantly 
contributed to the theoretical foundations for precise 
diagnosis, treatment, and prognosis of tumors. How-
ever, the integration of quantitative measurements from 
multi-modality data for clinical prognostication remains 

a formidable challenge. This is largely due to the high 
dimensionality and heterogeneity of the data.

Multi‑source, complex and unstandardized datasets 
in data availability
It is increasingly recognized that many cancer character-
istics have an impact on the prognosis of cancer patients, 
including genomics, proteomics, clinical parameters, and 
invasive biomarkers of tumors. Perhaps the greatest chal-
lenge in multimodal machine learning is data scarcity in 
multi-source, complex and unstandardized datasets [12, 
87].

The performance of any AI-based approach depends 
primarily on the quantity and quality of input data. The 
data used to train the AI algorithm needs to be clean, 
carefully collected and curated, have a maximum signal-
to-noise ratio, and be as accurate and comprehensive as 
possible to achieve maximum predictive performance. 
When harnessing complex, unstandardized datasets 
from multicenter sources, the availability of datasets 
played a crucial role in the next process. Stained tissue 
specimens are often manually located and scanned, with 
limited clinical annotations and tremendous storage 
requirements. While AI algorithms [88–90] have been 
developed to standardize data, including staining and 
color normalization techniques. In recent years, studies 
have [91, 92] also been devoted to establishing compre-
hensive quality control and standardization tools, provid-
ing useful insights for preprocessing heterogeneous and 
multicenter datasets.

Developing and implementing the multi-modal fusion 
model requires access to matched pathology, genomic 
data, and clinical data. Such cross-institutional data 
sharing is essential to promote and test model gener-
alizability. However, most medical datasets are still too 
sparse to be useful for the training of advanced machine 
learning techniques, and how to overcome these chal-
lenges is urgent to be solved. Leading platforms include 
the database of Genotypes and Phenotypes (dbGaP), the 
European Genome-phenome Archive (EGA), The Cancer 
Imaging Archive (TCIA), the Genomic Data Commons 
(GDC), and other resources in the National Cancer Insti-
tute (NCI) Cancer Research Data Commons. Beyond 
matched genomic data and H&E WSIs of TCGA and 
the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC), public resources contain only 
small patient cohorts with multiple data modalities (Ivy-
GAP [17]). To achieve this on a large scale, the exciting 
news is that Genomics England and the UK National 
Pathology Imaging Co-operative (NPIC [3]) announced a 
new initiative, the Genomics Pathology Imaging Collec-
tion (GPIC), combining digital pathology and genomic 
data to create a unique multi-omic resource for cancer 
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research. This collaboration builds on the rich data of 
the 100,000 Genomes Project to add over 250,000 addi-
tional high-resolution WSI alongside matched struc-
tured pathology reports, somatic and germline sequence 
data, radiology data, and longitudinal clinical data in the 
Genomics England Trusted Research Environment. GPIC 
as a unique pathomic dataset of world-leading scale and 
quality, enables the next generation of AI for clinical can-
cer diagnostics, treatment and prognosis, greatly alleviat-
ing the challenge of public data scarcity.

On the other hand, federated learning [93] is a potential 
solution for the logistical challenges of anonymizing data 
and institutional privacy policies, especially via decen-
tralized dataset distillation in resource-constrained edge 
environments [94]. Depending on the choice of model, 
federated learning may require novel training methods 
but enables training on multi-institutional cohorts with-
out data leaving the local network [95, 96].

Lack of repeatability and reproducibility in clinical settings
Repeatability and benchmarking are one of the major 
challenges of AI, and many published biomedical AI 
studies fail to provide source code, test data, or both. A 
key reason to try to validate independently with separate 
test sets is to ensure that these methods are resilient to 
pre-analysis sources of variation, including WSI prepara-
tion, scanner Models, and protocols.

To foster transparency, scientific repeatability, and 
measurable development, researchers should be encour-
aged to place new intermodal architectures and preproc-
essing solutions in standard repositories [97, 98] such 
as ModelHub.ai, github.com. and commercial vendors 
like Amazon S3, open-source products, Delta Lake for 
instance.

Meanwhile, due to the variability of the convolution 
kernel of the model, the overfitting or underfitting of the 
training data, etc., the identification of imaging biomark-
ers related to the prognosis from research will be irre-
producible. Multimodal machine learning (ML) is more 
prone to overfitting [99, 100], because in most cases, the 
multimodal dataset is smaller and the multimodal model 
needs to fit more parameters. Traditional ML models 
enable investigators to calculate the required dataset 
size for a tolerable generalization error prior to analyti-
cal workflows. In addition to center-specific confound-
ers, the actual clinical setting has unpredictable effects on 
model performance, often resulting in substantial perfor-
mance degradations.

Multimodal ML models should be used judiciously for 
tasks with large statistical sample sizes and with strate-
gies to combat overfittings, such as early stopping, data 
augmentation, gradient blending, weight decay, hard and 
soft sharing of hidden layer parameters. Investigators 

must be wary of spurious results due to institutional 
biases and small sizes, with cross-validation, retrospec-
tive external validation, prospective validation and clini-
cal trials serving as key measures to assess algorithm 
effectiveness.

Interpretability of models for trustworthy AI
Comprehension of how abstracted features from different 
modalities affect the model’s inference remains another 
significant problem, while the exploration of interpret-
ability of ML models, making the deep learning model, 
treated as a “black box”, in a more trustworthy way [101, 
102].

Despite their high accuracy and ease of applicabil-
ity, the lack of interpretability and contrasting domain-
inspired intuitive criticism in handcrafted networks is 
a possible potential obstacle to the clinical application 
of deep neural networks. Hand-crafted feature-based 
AI approaches in histological images can provide bet-
ter interpretability because they are often developed 
in conjunction with domain experts since the features 
were pre-fined, either in a domain-agnostic [101, 103, 
104] or domain-inspired [105] manner. However, creat-
ing bespoke hand-crafted features is often a challenging 
and trivial task due to the considerable time and domain 
knowledge that pathologists or oncologists have invested 
in developing this method. This could critically impact 
the trustworthiness of model performance.

Interpretation of extracted features hinders the devel-
opment of multimodal fusion studies to a certain degree. 
Computational fusion methods require not only the con-
sideration of the discriminative power of the extracted 
features in the task but also the interpretability of these 
features. Focused efforts to clarify the concept within 
medicine have shown that clinicians generally view inter-
pretability as transparency in model reasoning, adjust-
able features, and limitations [106].

The field of multimodal in biomedicine particularly 
stands to benefit from interpretable AI, both in terms 
of imaging patterns of clinical features and molecular 
expression profiles of disease. Towards this end, we sum-
marize various interpretability techniques for intuitive 
classification, organizing them according to two funda-
mental characteristics: ante-hoc explanatory methods, 
where the target models incorporate an explanation 
module into their architecture so that they are capable of 
explaining their predictions; post-hoc explanatory meth-
ods, where aim to explain already trained and fixed target 
models. In this pathogenomics review, we mainly focus 
on feature-based explanations. As for feature-based post-
hoc explanatory methods, LRP [107, 108], LIME [109], 
DeepLIFT [110], SHAP [111], Integrated Gradients 
[109], L2X [112], Anchors [113], Grad-CAM [114] and 
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LS-Tree [115] are currently the most widespread form of 
explanatory techniques; while self-explanatory methods 
with feature-based explanations include RCNN [116], 
CAR [117], INVASE [118], as well as the influential class 
of attention models [119] are commonly used for com-
mon features like super-pixels for images as well. Figure 3 
shows the classification of interpretability techniques, 
and structured representation of the varied categories of 
interpretability methods shown in this review.

In the realm of ante-hoc interpretability, the primary 
advantages lie in intrinsic transparency and credibility. 
This approach integrates explicability into the design 
and training process of the model, enabling concurrent 

predictions and explanations. However, its limitations 
include potentially increased complexity in model design 
and the possibility that an excessive focus on interpret-
ability might compromise performance. Balancing model 
accuracy with interpretability poses a significant chal-
lenge in ante-hoc interpretability research and represents 
a crucial direction for future advancements in explainable 
AI research [120, 121]. Regarding post-hoc interpretabil-
ity, its strengths are flexibility and wide applicability. This 
approach is adaptable to various types and complexities 
of models without necessitating architectural modifica-
tions. However, a notable downside is the potential for 
misconceptions. The evaluative challenge lies in devising 

Feature Inversion

Backpropagation

Sensitive analysis

Rule extraction

Self-explanatory models

Attention mechanisms

Global interpretability

Local interpretablity

Generalized additive 
models

Ante-hoc explanatory 
methods

Post-hoc
explanatory methods

Interpretability Techniques

Activation maximization

Knowledge distillation

Local approximation

Fig. 3  Classification of feature-based interpretability methods. Generally, it can be divided into ante-hoc explanatory methods and post-hoc 
explanatory methods
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methods that faithfully represent the decision-making 
model, mitigating inconsistencies between the explana-
tions and the model’s actual behaviors. This ensures the 
reliability and safety of the interpretative outcomes [120, 
121]. In summary, within pathogenomics research, ante-
hoc explanations provide profound insights, especially 
beneficial for relatively straightforward models or those 
require high levels of explicability from its inception, par-
ticularly in multimodal fusion analyses. Conversely, post-
hoc interpretations provide flexibility and practicality in 
pathogenomics correlation and fusion analysis models, 
especially for complex and already-developed models.

We believe that researchers should comprehend learn-
ing models from a biological and clinical perspectives to 
facilitate reasonable multimodal implementation. Under-
standing a model is as crucial as enhancing its predictive 
power and can lead to greater mechanistic insight and 
testable hypotheses.

Conclusions
We summarize the current state of pathogenomics, com-
bining synthesized complementary modalities of data 
with emerging multimodal AI-driven approaches for bet-
ter comprehension of diagnostic, prognostic, and predic-
tive decision-making for oncology. One future direction 
of pathogenomics is the exploration of more “omics” 
techniques (transcriptomics, proteomics, metabolomics, 
etc.) combined with functional imaging data (such as per-
fusion, diffusion imaging and spectroscopy, etc.) to open 
up more new avenues for multidimensional pathogenom-
ics via LLMs techniques. In conclusion, with further in-
depth research, pathogenomics will play a more active 
role in the medical field, especially in cancer research, 
and is likely to revolutionize the diagnosis, treatment and 
prognosis progress of cancer patients via taking advan-
tage of complementary information in an intuitive man-
ner, and ultimately open novel perspectives for precision 
oncology and empower a healthy and productive life in 
the coming decade.
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