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Abstract 

Background  Magnetic resonance fingerprinting (MRF) enables fast myelin quantification via the myelin water frac‑
tion (MWF), offering a noninvasive method to assess brain development and disease. However, MRF-derived MWF 
lacks histological evaluation and remains unexamined in relation to leukodystrophy. This study aimed to access 
MRF-derived MWF through histology in mice and establish links between myelin, development, and leukodystrophy 
in mice and children, demonstrating its potential applicability in animal and human studies.

Methods  3D MRF was performed on normal C57BL/6 mice with different ages, megalencephalic leukoencepha‑
lopathy with subcortical cyst 1 wild type (MLC1 WT, control) mice, and MLC 1 knock-out (MLC1 KO, leukodystrophy) 
mice using a 3 T MRI. MWF values were analyzed from 3D MRF data, and histological myelin quantification was car‑
ried out using immunohistochemistry to anti-proteolipid protein (PLP) in the corpus callosum and cortex. The 
associations between ‘MWF and PLP’ and ‘MWF and age’ were evaluated in C57BL/6 mice. MWF values were com‑
pared between MLC1 WT and MLC1 KO mice. MWF of normal developing children were retrospectively collected 
and the association between MWF and age was assessed.

Results  In 35 C57BL/6 mice (age range; 3 weeks–48 weeks), MWF showed positive relations with PLP immunoreactiv‑
ity in the corpus callosum (β = 0.0006, P = 0.04) and cortex (β = 0.0005, P = 0.006). In 12-week-old C57BL/6 mice MWF 
showed positive relations with PLP immunoreactivity (β = 0.0009, P = 0.003, R2 = 0.54). MWF in the corpus callosum 
(β = 0.0022, P < 0.001) and cortex (β = 0.0010, P < 0.001) showed positive relations with age. Seven MLC1 WT and 9 
MLC1 KO mice showed different MWF values in the corpus callous (P < 0.001) and cortex (P < 0.001). A total of 81 chil‑
dren (median age, 126 months; range, 0–199 months) were evaluated and their MWF values according to age showed 
the best fit for the third-order regression model (adjusted R2 range, 0.44–0.94, P < 0.001).

Conclusion  MWF demonstrated associations with histologic myelin quantity, age, and the presence of leukodystro‑
phy, underscoring the potential of 3D MRF-derived MWF as a rapid and noninvasive quantitative indicator of brain 
myelin content in both mice and humans.
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Background
Magnetic resonance fingerprinting (MRF) is a quantita-
tive framework that can be used to assess brain develop-
ment [1, 2]. With MRF, both T1 and T2 relaxation times 
can be acquired in a single acquisition within reasonable 
scanning times [3]. These relaxation time values reflect 
tissue properties that change as the brain matures [1]. In 
addition to T1 and T2 relaxation times, myelin content 
can be quantified with MRF [1]. MRF enables the meas-
urement of myelin by separating myelin-bound water 
from other water components such as free water and 
intra- or extracellular water based on relaxation times 
[4]. The fraction of myelin-bound water in the total water 
pool is termed the myelin water fraction (MWF) [1, 5].

MWF characterizes brain development [1] because 
myelination is tightly linked to neural development [6, 
7]. Conventional qualitative assessments of myelination 
using T1- and T2-weighted images [8] have evolved to 
quantitative assessments using diffusion tensor, relaxa-
tion times, or MWF [1, 6, 9]. A recent study reported 
on T1 and T2 relaxation times and MWF using 2-dimen-
sional MRF from the developing brains of 28 children 
(age range, 0 to 5  years old) [1]. Another study focused 
on T1 and T2 relaxation times from the brain regions of 
25 neonates (median-corrected gestational age, 263 days) 
according to age using 3-dimensional (3D) MRF [2]. Nev-
ertheless, there is a notable lack of studies that histologi-
cally validate 3D MRF-derived MWF values with myelin 
markers.

Heritable white matter (WM) disorder is not uncom-
mon with an estimated incidence of up to 1 per 8000 live 
births [10]. Brain magnetic resonance imaging (MRI) is 
a valuable assessment tool for WM disease in children 
[9, 11]. Still, studies that apply MRF-derived MWF to 
WM in leukodystrophies are limited. Megalencephalic 
leukoencephalopathy with subcortical cysts (MLC) is an 
inherited autosomal recessive disorder that shows infan-
tile-onset cerebral WM edema that is characterized by 
myelin vacuolation [12, 13]. MLC patients develop mac-
rocephaly during their first year of life, with conditions 
generally stabilizing afterward [13]. On brain MRI, dif-
fuse swelling is noted in the cerebral WM with increased 
water content [13, 14]. Histologically, the brains of MLC 
patients show fluid-filled vacuoles within myelin sheaths 
[15] that likely affect quantified myelin expression in des-
ignated areas [16].

Since studies histologically validating 3D MRF-derived 
MWF values and corroborating MWF changes in leukod-
ystrophy are currently lacking in literature, we aimed to 
histologically evaluate MRF-derived MWF and evaluate 
its associations with age and leukodystrophy in mice. In 
addition, since studies evaluating 3D MRF-derived MWF 
values in developing brains have only been performed 

on a limited number of children [1], we aimed to evalu-
ate MWF and its associations with age in children, dem-
onstrating the broad applicability of MRF studies in both 
mice and humans.

Methods
Animal study
Mice
Animal experiments were performed in compliance with 
the animal care guidelines issued by the National Insti-
tutes of Health and the Institutional Animal Use and 
Care Committee of The Catholic University of Korea. 
To evaluate myelination according to brain develop-
ment, 35 C57BL/6 mice (19 females) were scanned from 
October 2021 to March 2022. The mice were of different 
ages from 3 to 48 weeks. To evaluate myelination in mice 
with leukodystrophy, 9 MLC1 wild type (WT, control 
model) mice and 9 MLC1 knock-out (KO, leukodystro-
phy model) mice were scanned from December 2021 to 
January 2022. Two MLC1 WT mice were excluded from 
the final MWF evaluation due to motion artifact of the 
images. Details on animal preparation are provided in 
Additional file 1: Appendix S1 and Additional file 3: Fig-
ure S1.

MRI Acquisitions and Postprocessing
All images were acquired using a 3T MR scanner (Vida, 
Siemens Healthineers, Erlangen, Germany). In the animal 
study, a 6-channel birdcage coil (Stark Contrast, Erlan-
gen, Germany) was used. 3D MRF with the stack-of-star 
acquisition was performed with the following param-
eters: repetition time, 10 ms; echo time, 4.84 ms; field of 
view, 60 × 60 × 24 mm3; voxel size, 0.5 × 0.5 × 2 mm3; 
flip angle, sinusoidal pattern; MRF time points, 640; 
number of radial spokes/MRF time points, 32; and accel-
eration factor along slice direction, 3 (scanning time: 17 
min 55 sec) (Fig.  1). T2-weighted turbo spin echo scans 
for anatomical reference were performed with the follow-
ing parameters: repetition time, 3000 ms; echo time, 64 
ms; flip angle, 150 degrees; field of view, 42 × 42 mm2; 
resolution, 0.1 × 0.1 mm2; slice thickness, 1 mm; 18 slices 
acquired; grappa factor, 2; and averages, 8 (scanning time: 
7 min 17 s).

T1 and T2 maps were derived from 3D MRF [2]. Then, 
a partial volume MRF analysis with a three-compartment 
model proposed in a previous study [1], was performed 
to measure MWF values. Predefined T1 and T2 values 
of each compartment were T1=130 ms, T2=20 ms for 
myelin water; T1=1300 ms, T2=130 ms for intracellular/
extracellular water; T1=4500 ms, and T2=500 ms for free 
water (Fig. 1) [1, 4]. An iterative reconstruction method 
was also applied to improve image quality [2, 17]. 3D 
MRF utilized fast imaging with steady-state precession 
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acquisition, and it did not include radiofrequency spoil-
ers or spoiler gradients for complete spoiling. 3D MRF 
sequence detail and accuracy of T1 and T2 values derived 
from 3D MRF is described in prior studies [2, 17].

To assess changes in MWF in response to various 
predefined T1 and T2 values of myelin water, additional 
five different T1 and T2 combinations were applied to a 
13-month-old MLC1 WT and a 13-month-old MLC1 KO 
mouse: combination 1, T1 = 10 ms, T2 = 10 ms; combina-
tion 2, T1 = 65 ms, T2 = 20 ms; combination 3, T1 = 130 

ms, T2 = 10 ms; combination 4, T1 = 252 ms, T2 = 15 ms; 
combination 5, T1 = 828 ms, T2 = 72 ms. The predefined 
T1 and T2 values for intra/extracellular and free water 
were kept unchanged from the original settings.

Immunohistochemistry
Mice brain sections were incubated with mouse anti-
proteolipid protein (PLP). Details for immunohistochem-
istry are provided in Additional file 1: Appendix S2. For 

Fig. 1  Flowchart of myelin water fraction (MWF) map generation using 3D MR fingerprinting (MRF). A 3D MRF acquisition scheme 
and reconstructed MRF images with a sinusoidal flip angle pattern and 3D stack-of-star acquisition trajectory (A). Signal evolutions of a partial 
volume dictionary for each component (myelin, intra/extracellular, and free water components) (B). Representative fraction maps of a mouse 
after dictionary matching (C). SVD, singular value decomposition
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immunoreactivity quantification, NIH ImageJ software 
was used (Additional file 1: Appendix S3).

Data analysis
One board-certified radiologist (H.G.K. with 14 years of 
experience in pediatric neuroradiology) drew regions of 
interest in the corpus callosum and cortex on mice MWF 
maps using T2-weighted images of each mouse as refer-
ence using ITK-SNAP (version 3.8.0; http://​www.​itksn​ap.​
org/) (Additional file 4: Figure S2). On brain sections with 
immunohistochemistry staining, one scientist (K.C. with 
19 years of experience in mice brain study) drew regions 
of interest in the corpus callosum and cortex using NIH 
ImageJ.

Children study
Children
The Institutional Review Board approved this retrospec-
tive study of children, and the requirement for informed 
consent was waived. Our institution includes 3D MRF 
in routine clinical practice when brain MRI scans are 
performed. For neonates, we perform feed and wrap 
technique using a MedVac infant immobilizer (CFI Med-
ical, USA) for MR scanning [18]. Clinical reports of MRI 
scans between June 2020 and June 2022 were consecu-
tively reviewed, yielding 750 MRI studies. We excluded 
MRI exams for individuals with pathologic abnormalities, 
psychiatric diseases, or a history of preterm birth. Then, 
MRF obtained without a B1 map were excluded yielding 
81 MRI studies (Fig. 2).

Children were divided by age into children 5 years or 
less and those older than 5 years. All MRI studies were 
reviewed and interpreted as having normal myelination 
by a board-certified pediatric radiologist (H.G.K. with 14 
years of experience).

MRI Acquisitions and Postprocessing
In children, a 64-channel head and neck coil was used. 
3D MRF with hybrid radial-EPI acquisition [2] was per-
formed with the following parameters: repetition time, 
7.7 ms; echo time, 4.84 ms; field of view, 256 × 256 × 144 
mm3; voxel size, 0.7 × 0.7 × 2 mm3; flip angle, sinusoidal 
pattern; MRF time points, 640; number of radial spokes/
MRF time points, 6; acceleration factor along slice direc-
tion, 5; and number of echo train length along slice direc-
tion; 4 (scanning time: 4 min 54 sec). T1, T2, and MWF 
maps were derived from 3D MRF, as detailed in the pre-
ceding section of this manuscript [1, 2].

Data Analysis
One board-certified radiologist (H.G.K. with 14 years of 
experience in pediatric neuroradiology) drew regions of 
interest on the frontal WM, parietal WM, occipital WM, 
posterior limb of the internal capsule, genu of the cor-
pus callosum, splenium of the corpus callosum, caudate, 
putamen, and thalamus. Regions of interest in each brain 
region were drawn using T1 values maps as reference 
using ITK-SNAP (version 3.8.0; http://​www.​itksn​ap.​org/) 
(Additional file 5: Figure S3).

Fig. 2  Flowchart of children selection

http://www.itksnap.org/
http://www.itksnap.org/
http://www.itksnap.org/
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Intra‑ and interobserver agreement
To evaluate the intraobserver agreement for MWF val-
ues in children, one board-certified radiologist (H.G.K. 
with 14 years of experience in pediatric neuroradiology) 
drew regions of interest in the brain regions at two-week 
intervals. To evaluate the interobserver agreement, two 
board-certified radiologists (J.K. and H.G.K. with 10 and 
14 years of experience in neuroradiology and pediatric 
neuroradiology, respectively) blinded to clinical informa-
tion independently drew the regions of interest.

Age‑matched animal and children
To evaluate the MWF values in the corpus callosum and 
cortex of age-matched groups, we selected C57BL/6 mice 
aged 3 weeks and children aged 12 years [19]. For the 
analysis of the children’s corpus callosum, the genu was 
selected as the region of interest.

Statistics
Normality for variables was assessed using Kolmogo-
rov–Smirnov test. Age and sex were compared between 
MLC1 WT and MLC1 KO mice using the Mann–Whit-
ney test and Fisher’s exact test, respectively. Associa-
tions between ‘MWF and PLP immunoreactive area’ and 
‘MWF and age’ were evaluated using linear regression in 
all C57BL/6 mice according to brain region of the corpus 
callosum and cortex. In 12-week C57BL/6 mice, asso-
ciation between ‘MWF and PLP immunoreactive area’ 
of both corpus callosum and cortex was evaluated using 
linear regression. To compare MWF values between 
MLC1 WT and MLC1 KO mice, the Mann–Whitney test 
was used. To compare PLP immunoreactive area values 
between MLC1 WT and MLC1 KO mice, the unpaired 
t-test was used. The age-MWF value relationships in 
children were analyzed with scatter plots and nonlinear 
regression. Second-order and third-order regressions 
were used for nonlinear regression and the regression 
models were compared. The age-T1 and age-T2 value rela-
tionships in children were analyzed with scatter plots and 
third-order regressions. β coefficients were derived to 
show the degree of change in MWF values or PLP immu-
noreactive areas (%) at 1-week intervals for C57BL/6 
mice and at 1-year intervals for the children. Intraclass 
correlation coefficients (ICCs) were calculated to evalu-
ate the intra- and interobserver agreement [20]. An ICC 
of 0.61–0.80 signified strong agreement and that of 0.81–
1.00 signified to near complete agreement [21]. ICC was 
estimated based on a mean-rating (k = 2), absolute-agree-
ment, two-way mixed-effects model. All statistical anal-
yses were performed using software (SPSS version 29, 
SPSS; or GraphPad Prism version 8.4.2; GraphPad). All 
statistical analyses were performed by an author (H.G.K., 

14 years of experience). Bonferroni correction was done 
for multiple testing and P values less than 0.05 were con-
sidered statistically significant.

Results
Animal study
Characteristics of the study sample
Thirty-five C57BL/6 mice of different ages (median age, 
12 weeks; age range; 3–48 weeks) were evaluated: age of 
3 weeks, 8 mice (6 females); 8 weeks, 8 mice (4 males); 
12 weeks, 7 mice (4 males); 24 weeks, 5 mice (3 females); 
and 48 weeks, 7 mice (4 males). To compare myelina-
tion degree in mice with and without leukodystrophy, 
9 MLC1 WT mice (median age, 17 months; age range, 
12–20 months; 7 males) and 9 MLC1 KO mice (median 
age, 13 months; age range, 13–24 months; 6 females) 
were studies. For MWF study, the same 9 MLC1 KO 
mice and 7 MLC1 WT mice (median age, 17 months; 
age range, 12–20 months; 6 males) were evaluated. The 
demographic data of mice are shown in Table 1.

Association with histologic myelin staining and age
In all C57BL/6 mice, MWF and PLP immunoreactive 
area values showed positive relationships in the corpus 
callosum (β = 0.0006, P = 0.04) and cortex (β = 0.0005, P 
= 0.006) (Fig. 3A). In 12-week C57BL/6 mice, MWF and 
PLP immunoreactive area values showed a positive rela-
tionship (β = 0.0009, P = 0.003, R2 = 0.54) (Fig. 3A). In 
C57BL/6 mice, the median [IQR] MWF values of the cor-
pus callosum and cortex were 0.1 [0.06] and 0.08 [0.02], 
respectively. MWF values showed positive relationships 
with age in the corpus callosum (β = 0.0022, P < 0.001) 
and cortex (β = 0.0010, P < 0.001) (Fig. 3B). Representa-
tive MWF maps and PLP immunoreactive staining of 
C57BL/6 mice of different ages are shown in Fig. 3C. PLP 

Table 1  Characteristics of the mice

Data are presented as medians with IQRs in brackets and ranges in parentheses 
or numbers of patients with percentages in parentheses

MLC1 = megalencephalic leukoencephalopathy with subcortical cyst 1, 
WT = wild type, KO = knock-out

Characteristic C57BL/6 MLC1 WT MLC1 KO MLC1 WT 
vs MLC1 
KO

(n = 35) (n = 9) (n = 9) P value

Age (weeks) 12 [16] 
(3–48)

68 [20] 
(48–80)

52 [24] 
(52–96)

0.80

Age (months) 3 [4] (1–12) 17 [5] 
(12–20)

13 [6] 
(13–24)

0.80

Sex 0.08

Male 16 (46) 7 (78) 3 (33)

Female 19 (54) 2 (22) 6 (67)
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immunoreactive area, MWF, T1, and T2 values for each 
age group are summarized in Additional file 2: Table S1.

Association with genetic white matter disease in mice
When MWF values were compared, both the corpus cal-
losum (MLC1 WT vs MLC1 KO: 0.20 [IQR, 0.03] vs 0.13 
[IQR, 0.04], respectively; P < 0.001) and cortex (MLC1 
WT vs MLC1 KO: 0.12 [IQR, 0.02] vs 0.06 [IQR, 0.03], 
respectively; P < 0.001) showed a difference between 
MLC1 WT and KO mice (Table  2 and Fig.  4A). PLP 
immunoreactive area values was differed between MLC1 
WT and KO mice in the corpus callous (MLC1 WT vs 
MLC1 KO: 57% [IQR, 50%] vs 31% [IQR, 22%], respec-
tively; P = 0.03) but not in the cortex (MLC1 WT vs 
MLC1 KO: 86% [IQR, 74%] vs 42% [IQR, 62%], respec-
tively; P = 0.16) (Table  2 and Fig.  4B). Representative 
MWF maps of MLC1 WT and KO mice are shown in 
Fig. 4C.

MWF according to predefined T1 and T2 values
Table 3 summarizes the MWF values derived from vari-
ous predefined T1 and T2 combinations for myelin water. 
Consistent trends were observed across the different 
combinations: higher MWF values in the corpus callo-
sum compared to the cortex, and higher values in MLC1 
WT mice than in MLC1 KO mice. In detail, in Combi-
nation 1, where both T1 and T2 were set to 10 ms, lower 
MWF values were obtained compared to the original 
combination. In Combination 2, featuring a higher T1 
than the original setting, reduced MWF values were 
observed. In contrast, Combination 3, with a lower T2 
value, exhibited higher MWF values than the original. 
Combinations 4 and 5, both having higher T1 values but 
differing in T2 values (lower in Combination 4, higher in 
Combination 5), demonstrated increased MWF values 
compared to the original combination.

Children study
Characteristics of the study sample
A total of 81 children (median age, 126 months; age 
range, 0–199 months; 50 females) were evaluated. There 
were 57 children older than 5 years of age (median age, 
151 months; age range, 68–199 months; 37 females). The 
demographic data of children are shown in Table 4.

Association with age in children
MWF values for all children and those for the age sub-
groups are summarized in Additional file  2: Table  S2. 
Median MWF values in the brain regions of all children 
ranged from 0.03 to 0.44. Median MWF value ranges 
in the brain regions of children 5 years old or less and 
children older than 5 years were 0–0.02 and 0.03–0.49, 
respectively. Scatter plots showed higher MWF values 
with age in the brain regions of children (Fig.  5A). Sec-
ond- and third-order regressions demonstrated that 
MWF values were related to age in each brain region 
(Table 5). MWF values according to age was fitted to the 
third-order regression model (adjusted R2 range, 0.44 – 
0.94, P < 0.001). When the two regression models were 
compared, frontal WM, parietal WM, occipital WM, 
posterior limb of the internal capsule, genu of the corpus 
callosum, and splenium of the corpus callosum showed 
the best fit with the third-order regression model (P value 
range; < 0.001 to 0.04). Representative MWF maps from 
children of different ages are shown in Fig.  5B. Scatter 
plots of T1 and T2 values according to age is shown in 
Additional file 6: Figure S4 and Additional file 7: Figure 
S5, and the third-order regression results are shown in 
Additional file 2: Table S3. T1 and T2 values of the brain 
regions according to age was fitted to the third-order 
regression model (T1, adjusted R2 range, 0.75−0.82, P < 
0.001; T2, adjusted R2 range, 0.60−0.76, P < 0.001). 

Intra‑ and interobserver agreement
Intraobserver agreement for MWF was strong to near 
complete with the ICC ranging from 0.71 (95% CI: 0.55, 
0.81) to 0.99 (95% CI: 0.99, 0.99) depending on the brain 
region. Interobserver agreement for MWF was also 
strong to near complete with the ICC ranging from 0.71 
(95% CI: 0.55, 0.81) to 0.95 (95% CI: 0.92, 0.97). Intra- 
and interobserver agreement for MWF, T1, and T2 values 
are summarized in Additional file 2: Table S4.

Age‑matched animal and children
There were 8 C57BL/6 mice at 3 weeks of age and 5 chil-
dren aged 12 years. The median [IQR] MWF of the cor-
pus callosum was 0.11 [0.01] in the 3-week-old mice and 
0.53 [0.15] in the 12-year-old children. For the cortex, the 
median [IQR] MWF was 0.08 [0.01] and 0.05 [0.03] in the 
3-week-old mice and 12-year-old children, respectively.

Fig. 3  Myelin water fraction (MWF) according to the proteolipid protein (PLP) immunoreactive area value and age. MWF showed significant 
association with PLP immunoreactive area value in the corpus callosum (A, left) and cortex (A, middle) in all C57BL/6 mice and in seven 12-week-old 
C57BL/6 mice (A, right). MWF showed significant association with age in the corpus callosum (B, left) and cortex (B, right). Representative PLP 
immunoreactive staining images (left column) and MWF maps (right column) of C57BL/6 mice of different ages (C). Solid lines indicate the linear 
regression lines of best fit, and dashed lines indicate the 95% confidence intervals

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Discussion
Myelin quantification with brain MRI is important for 
the evaluation of normal brain development and leukod-
ystrophy. MWF is considered an important parameter 
when quantifying myelin, but MWF derived from MRF 
has not been validated histologically or in a large study 
sample. In our study, we evaluated naive mice of differ-
ent ages and transgenic mice showing leukodystrophy. 
3D MRF-derived MWF values in the corpus callosum 
and cortex showed a positive relationship with histo-
logic myelin immunoreactive areas and were higher with 
increasing age. Mice with leukodystrophy showed lower 
MWF values in the corpus callosum and cortex compared 
to control mice. In 81 normally developing children, the 

Table 2  Comparison of megalencephalic leukoencephalopathy 
subcortical cyst 1 wild type and knock-out mice

Data are presented as medians with IQRs in brackets and ranges in parentheses 
or numbers of mice with percentages in parentheses

MLC1 = megalencephalic leukoencephalopathy with subcortical cyst 1, 
WT = wild type, KO = knock-out, PLP = anti-proteolipid protein immunoreactive 
area

Parameter MLC1 WT MLC1 KO P value

Myelin water fraction

Corpus callosum 0.20 [0.03] 0.13 [0.04]  < 0.001

Cortex 0.12 [0.02] 0.06 [0.03]  < 0.001

PLP (%)

Corpus callosum 57 [50] 31 [22] 0.03

Cortex 86 [74] 42 [62] 0.16

Fig. 4  Comparison of myelin water fraction (MWF) and proteolipid protein (PLP) immunoreactive area values between leukodystrophy and control 
mice. Both the corpus callosum and cortex showed a difference in MWF values between MLC1 WT and KO mice (A). PLP immunoreactive area 
values was differed between MLC1 WT and KO mice in the corpus callous but not in the cortex (B). Representative PLP immunoreactive staining 
images and MWF maps of 13-month-old MLC1 WT and MLC1 KO mice (C). An asterisk (*) indicates a P-value smaller than 0.05
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MWF values exhibited the anticipated developmental 
trend of myelin, aligning best with third-order regression 
models.

We histologically evaluated 3D MRF-derived MWF 
in mice of different ages and mice with leukodystrophy. 
The histologic evaluation of MWF imaging is an impor-
tant step before MWF can be incorporated into actual 
preclinical and clinical research. MWF values in both 
animal models and humans have been measured to show 

Table 3  Myelin water fraction values in megalencephalic leukoencephalopathy with subcortical cysts 1 wild-type and knock-out mice 
according to predefined T1 and T2 values of myelin water

*  A 13-month-old mouse, MLC1 = megalencephalic leukoencephalopathy with subcortical cyst 1, WT = wild type, KO = knock-out

Combination MLC1 WT mouse* MLC1 KO mouse*

T1 (ms) T2 (ms) Corpus callosum Cortex Corpus callosum Cortex

Original 130 20 0.178 0.123 0.121 0.021

1 10 10 0.022 0.006 0.008 0

2 65 20 0.101 0.057 0.058 0.001

3 130 10 0.221 0.158 0.159 0.037

4 252 15 0.312 0.256 0.243 0.130

5 828 72 0.888 0.837 0.837 0.574

Table 4  Characteristics of the children

Data are presented as medians with IQRs in brackets and ranges in parentheses 
or numbers of patients with percentages in parentheses

Characteristic Children (n = 81)

Age (months) 126 [144] (0–199)

Sex

Male 31 (38)

Female 50 (62)

Fig. 5  Myelin water fraction according to age in children. Scatter plots showing the myelin water fraction of multiple brain regions according 
to age in children (A). Representative axial MR fingerprinting-derived myelin water fraction maps of children of different ages (from left to right: 
a 2-month-old female, a 7-month-old female, a 20-month-old male, 42-month-old male, and 161-month-old male) (B). Solid lines indicate 
the third-order regression lines of best fit, and dashed lines indicate the 95% confidence intervals
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their association with demyelinating conditions [22, 
23] or autism spectrum disorder [24, 25]. MWF can be 
derived using the T2, T2*, T1, or steady-state-based MR 
sequences [5]. Compared to these MR sequences, 3D 
MRF allows a faster and high spatial resolution coverage 
of the brain in which whole brain coverage is possible in 
less than 10 min [2]. We used 3D MRF based on hybrid 
radial-interleaved EPI acquisition. In a past study, 2D 
synthetic MRI that quantified relaxation times and pro-
ton density by the multi-echo acquisition of a saturation 
recovery using turbo spin-echo readout (QRAPMAS-
TER) was histologically evaluated for myelin quantifica-
tion [26]. Synthetic MRI-derived myelin quantity was 
correlated with Luxol fast blue staining (spearman cor-
relation coefficient = 0.74%, R2 = 0.55) [26]. This finding 
is consistent with our study, where MRF-derived MWF 
showed a relationship with PLP immunoreactivity (linear 
regression correlation coefficient = 0.0009, R2 = 0.54). The 
past study showed mean white and gray matter myelin 
values of 0.31 and 0.05, respectively [26]. The quanti-
fied values were consistent with our findings for children 
older than 5 years (median MWF: frontal WM, 0.35 and 
putamen, 0.08). However, direct comparison between 
our study and the past study is currently challenging 
since the myelin quantification derived from MRI is not 
highly specific to actual myelin density, with 45–46% of 
the signal unexplained by myelin density. Moreover, our 
study and the previous study employed different histo-
logical staining methods (PLP staining for our study ver-
sus Luxol fast blue staining for the synthetic MRI study). 
Given that different markers such as Luxol fast blue, PLP, 
myelin basic protein, and myelin oligodendrocyte gly-
coprotein can yield varying expression values following 
experimental demyelination and remyelination, despite 

generally reflecting myelination status [27], it will be 
interesting to identify the best and/or appropriate com-
bination of markers tailored to the specific circumstances 
of myelin dynamics. Thus, while our histological evalu-
ation of 3D MRF-derived MWF in mice highlights its 
promising application in research, the potential for direct 
comparison with previous studies is constrained by dif-
ferences in specificity and staining methods, warranting 
additional investigation.

MWF values for both mice and children were generally 
higher according to age in our study, and the results are 
in line with previous studies [28, 29]. We showed that 3D 
MRF-derived MWF values can be used to assess brain 
maturation by showing quantitative myelination values. 
In the past, a qualitative assessment was generally used 
as the brain follows typical spatial developing patterns. 
However, now more quantitative [2, 6] and automatic 
assessment techniques [30] are available for measuring 
brain maturation. Age-related changes to myelin and its 
quantity have been studied in both children and adults 
[1, 2, 6, 29, 31]. In  vivo evaluations of children’s MRI-
based myelination quantification are mostly conducted 
by fitting the values into nonlinear equations [6, 32]. 
Although the developmental tendency aligned well with 
the trend of children’s brain myelination in our study, the 
small MWF values in the subcortical and cortical regions 
(0.03–0.10) may merit a discussion regarding the accu-
racy of these values. Specifically, in the cortex, measure-
ments can be inaccurate due to partial volume averaging 
effects, as the structure is relatively thin to measure, and 
the spatial resolution of 3D MRF may still be limited. 
However, since MR quantitative parameters showing 
abnormal brain maturation in patients with autism spec-
trum disorder [24, 25] or in children born preterm [33, 

Table 5  Comparison of regression models assessing the relationships between age and myelin water fraction

RMSE = root mean squared error

Brain region Second-order regression Third-order regression Second- vs 
Third-order 
regression

Adjusted R2 RMSE P value Adjusted R2 RMSE P Value P value

Frontal white matter 0.90 0.04  < 0.001 0.94 0.03  < 0.001  < 0.001

Parietal white matter 0.83 0.06  < 0.001 0.85 0.06  < 0.001 0.002

Occipital white matter 0.81 0.07  < 0.001 0.84 0.06  < 0.001  < 0.001

Posterior limb of the internal capsule 0.83 0.05  < 0.001 0.90 0.03  < 0.001  < 0.001

Genu of the corpus callosum 0.86 0.08  < 0.001 0.86 0.08  < 0.001 0.04

Splenium of the corpus callosum 0.68 0.11  < 0.001 0.69 0.10  < 0.001  < 0.001

Caudate 0.64 0.01  < 0.001 0.65 0.01  < 0.001 0.19

Putamen 0.70 0.02  < 0.001 0.70 0.02  < 0.001 0.88

Thalamus 0.83 0.02  < 0.001 0.83 0.02  < 0.001 0.39

Cortex 0.42 0.02  < 0.001 0.44 0.02  < 0.001 0.06
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34] were revealed, it is worth having the relative degree of 
brain maturation in children assessed by 3D MRF.

Beyond MRF and synthetic MRI, a spectrum of MR 
techniques exists for quantifying myelination, includ-
ing ultra-short echo-time (UTE), magnetization trans-
fer (MT), inhomogeneous magnetization transfer 
(ihMT), and quantitative susceptibility mapping (QSM) 
[35]. Among these modalities, ihMT and QSM have 
demonstrated very strong correlations with myelina-
tion in animal models (R2 = 0.85 − 0.94), and UTE and 
MT techniques have exhibited strong correlations 
(R2 = 0.51 − 0.60) [35]. Our study showed a strong corre-
lation between MWF and PLP staining (R2 = 0.54), align-
ing with prior studies utilizing MWF (R2 = 0.55) [35]. 
Contrary to ihMT and QSM, regarded as indirect quan-
titative MRI strategies for myelination mapping, MRF 
is classified as a rapid, direct multiparametric quantita-
tive MRI approach, employing imaging data to directly 
synthesize parameter maps [36]. MRF facilitates the 
generation of T1 and T2 maps, as well as MWF maps, 
within a reduced time frame, whereas indirect myelina-
tion quantification methods necessitate extended scan 
durations and provide a restricted parameter set. Given 
the importance of fast scanning, especially for neonates, 
we employed MRF in the current study. However, other 
promising MRI methods such as ihMT and QSM will 
undoubtedly complement the accurate analysis of myeli-
nation in the brain.

In our study, MLC1 KO (leukodystrophy model) mice 
showed lower MWF values compared to MLC1 WT (con-
trol model) mice. This trend remained consistent across 
varying predefined T1 and T2 values for myelin water. 
MLC is an inheritable disorder characterized by cerebral 
white matter edema [37]. Histologically, brain content 
increases and intramyelinic vacuoles are observed with 
MLC [37]. This histologic alteration in mice can be seen 
as early as in 3 months of age and becomes prominent at 
7–12 months old [38]. When we evaluated myelination of 
MLC mice, cortical MWF significantly differed between 
MLC1 WT and MLC1 KO mice, while PLP staining 
showed a reducing trend in MLC1 KO mice. As both 
MWF and PLP results assessed from the corpus callosum 
demonstrated a significant reduction by MLC1 deletion, 
this may suggest that MWF is more sensitive to show 
changes due to leukodystrophy, however, a larger number 
of samples with different ages would be needed to con-
firm this assumption. In addition, since the genetic type 
of MLC is related to its clinical presentation and prog-
nosis [39], MWF assessment can potentially be used for 
genetic subtype classification.

Age-matched mice and children’s corpus callosum and 
cortex MWF showed similar trends in both species with 
values for corpus callosum (mice, 0.11; children 0.53) and 

cortex (mice, 0.08; children 0.05). The comparative litera-
ture on myelination using MRI methodologies between 
murine and human models is scarce. This scarcity might 
be attributable to the technical difficulties in standardiz-
ing MRI sequences for both species. Murine neuroimag-
ing commonly employs high-field MRI scanners (7 T or 
higher), whereas human neuroimaging studies generally 
utilize lower filed scanners (3 T or lower). There was one 
study showing the myelination trajectories in canines and 
simians using T2 relaxation time with a 2.35 T MRI scan-
ner [40], suggesting a potential for cross-species applica-
bility. However, the study did not directly compare the 
quantified myelination between species, possibly reflect-
ing more on the brain’s maturation stage than a species-
specific difference.

Our study has several limitations. First, a three-pool 
model was used to calculate MWF from 3D MRF based 
on previous studies [1, 4]. The T1 and T2 values that com-
pared the water pools were based on prior assumptions 
and calculations in adults and children [1, 4]. However, 
our MWF values were higher than prior MWF studies 
[41] and the accuracy of the MWF may be influenced by 
these predefined values as it is shown from our results 
(Table  3). Future investigation should consider curat-
ing specific T1 and T2 values tailored to children and 
adults. In addition, although we assumed that differences 
in relaxation time between compartments would not be 
drastically different for mice and humans, it is still debat-
able whether the same modeling can be applied to animal 
studies. Second, the selection of age ranges for mice and 
children differs, making direct comparisons between the 
two species in specific developmental periods challeng-
ing. The oldest C57BL/6 mice in our study were 48 weeks 
old, equivalent to 38–47 human years [19]. In contrast, 
our human data focused on evaluating MWF in chil-
dren up to 16 years old. It would be interesting to explore 
whether our MWF algorithm can also be applied to older 
humans in future studies. Third, data were collected ret-
rospectively and some of the children may have had fac-
tors affecting myelination. To lower this possibility, we 
showed MWF changes according to age, which fit with 
typical developing patterns. We also excluded children 
with structural abnormalities or with medical histories 
that could alter the course of normal development. How-
ever, the retrospective nature of this study makes it dif-
ficult to conclude that the children were healthy in every 
aspect. Fourth, considering the wide range of children, 
including young ones prone to motion artifacts, there 
is a possibility that MWF values might be affected by 
movement during MRI scanning. To reduce motion and 
increase safety, we applied the feed-and-wrap technique 
for neonates. However, for other children, whether non-
sedated or sedated, no specific method was employed to 
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mitigate motion. Completely eliminating motion dur-
ing MRI scans is challenging, and such movement can 
impact MWF values. Nevertheless, MRF has shown 
robustness to motion in prior studies [42]. The influence 
of motion on MWF parameters derived from MRF war-
rants future investigation.

Conclusions
In conclusion, we acquired MWF values using 3D MRF 
in mice of different ages, mice with leukodystrophy, and 
children of different ages. MWF values from 3D MRF 
were in high agreement with the values obtained from 
histopathologic myelin staining. We observed higher 
MWF values with increasing age in both mice and chil-
dren. MWF values were different between mice with 
and without leukodystrophy. Therefore, MWF derived 
from 3D MRF can be a promising parameter of myelin 
degree in the brain that can be attained rapidly and non-
invasively in both mice and humans. To establish MWF 
as a quantitative diagnostic tool, future studies for defin-
ing accurate T1 and T2 values for MWF measurement for 
both mice and humans are necessary. Longitudinal stud-
ies utilizing MWF to evaluate normal and pathological 
brain development will further enhance its role as a prog-
nostic and monitoring marker in patients with diseases.
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