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Abstract 

Syphilis, a sexually transmitted disease (STD) caused by Treponema pallidum (T. pallidum), has had a worldwide resur-
gence in recent years and remains a public health threat. As such, there has been a great deal of research into clini-
cal strategies for the disease, including diagnostic biomarkers and possible strategies for treatment and prevention. 
Although serological testing remains the predominant laboratory diagnostic method for syphilis, it is worth noting 
that investigations pertaining to the DNA of T. pallidum, non-coding RNAs (ncRNAs), chemokines, and metabo-
lites in peripheral blood, cerebrospinal fluid, and other bodily fluids have the potential to offer novel perspectives 
on the diagnosis of syphilis. In addition, the global spread of antibiotic resistance, such as macrolides and tetracy-
clines, has posed significant challenges for the treatment of syphilis. Fortunately, there is still no evidence of penicillin 
resistance. Hence, penicillin is the recommended course of treatment for syphilis, whereas doxycycline, tetracycline, 
ceftriaxone, and amoxicillin are viable alternative options. In recent years, efforts to discover a vaccine for syphilis have 
been reignited with better knowledge of the repertoire of T. pallidum outer membrane proteins (OMPs), which are 
the most probable syphilis vaccine candidates. However, research on therapeutic interventions and vaccine develop-
ment for human subjects is limited due to practical and ethical considerations. Thus, the preclinical model is ideal 
for conducting research, and it plays an important role in clinical transformation. Different preclinical models have 
recently emerged, such as in vitro culture and mouse models, which will lay a solid foundation for clinical treatment 
and prevention of syphilis. This review aims to provide a comprehensive summary of the most recent syphilis tactics, 
including detection, drug resistance treatments, vaccine development, and preclinical models in clinical practice.
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Introduction
Syphilis is a chronic multisystem disease caused by 
Treponema pallidum (T. pallidum), one of the oldest 
known diseases, with a resurgence in recent years. Since 
2000, the prevalence of syphilis has increased signifi-
cantly in developed countries. The Centers for Disease 
Control and Prevention (CDC) reported in 2017 that 
syphilis cases in the United States increased by up to 76% 
between 2013 and 2017 [1]. The World Health Organiza-
tion (WHO) reports that there are about 6.3 million new 
cases of syphilis worldwide every year, and it is estimated 
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that there will be 7 million new cases of syphilis in 2020 
[1, 2]. Syphilis is known as “the great imitator” due to its 
variable clinical manifestations that can mimic other dis-
eases. It not only causes chronic systemic multiple organ 
damage in adults, but also vertically spreads to the fetus 
through the placenta during pregnancy, leading to pre-
mature birth, miscarriage, stillbirth, and birth defects. 
The impact on sex with men (MSM), people living with 
HIV (PLWH), sex workers (SWs), and pregnant women 
is particularly serious [3]. Penicillin is still the preferred 
drug for the treatment of syphilis, but when it is not 
accessible (such as in allergic populations or countries 
where penicillin is not readily available), there are rela-
tively few options for treating all phases of the disease. 
Although there have been numerous attempts to use 
alternative drugs in recent years, it is worth noting that 
resistance to alternative drugs in T. pallidum has now 
been found in several regions [1]. Therefore, we should 
pay attention to the resistance of T. pallidum in the 
screening of alternative drugs. Furthermore, it is worth 
noting that there is currently no clinical vaccine available 
for the prevention of syphilis. However, more study and 
knowledge of outer membrane proteins (OMPs) might 
reveal novel insights that could revolutionize the devel-
opment of a syphilis vaccine.

Despite evidence-based curative treatment options 
with penicillin, it remains a public health threat with 
increasing prevalence over recent years. Research on 
therapeutic interventions and vaccine development for 
human subjects is limited due to practical and ethical 
considerations. Therefore, preclinical models are cru-
cial for investigating syphilis pathogenesis and devel-
oping novel therapies and vaccines. Besides, clinical 
transformation is also greatly aided by preclinical mod-
els. Implementation of forward translation—the process 
of implementing basic research discoveries into prac-
tice—and reverse translation—the process of elucidating 
the mechanistic basis of clinical observations—prac-
tices could greatly enhance our ability to develop effec-
tive anti-syphilis strategies. The aim of this review is to 
integrate the extensive literature to gain new insights and 
optimize current protocols for syphilis diagnosis, treat-
ment, and prevention, as well as preclinical models.

Diagnosis
Serologic diagnosis
Currently, serological testing is the most mainstream 
laboratory diagnosis method for syphilis, mainly includ-
ing the nontreponema test [rapid plasma reagin (RPR) 
test or venereal disease research laboratory (VDRL) test] 
and the treponema test [Treponema pallidum particle 
agglutination assay (TPPA), various enzyme immunoas-
says (EIAs), chemiluminescence immunoassays (CIAs) 

and immunoblots, or rapid treponemal, et al.] [4]. Non-
treponemal rapid plasma regain (RPR) flocculation tests 
are used to assess disease activity, assess response to 
treatment, and diagnose reinfection or recurrence. How-
ever, non-treponemal testing is for antibodies against 
lipoidal antigens, which are non-specific and usually not 
detected until a few weeks after infection. Treponema 
testing is more sensitive to early infection, and 
treponema serology is often used to detect treponema 
IgG (CLIA) and TPPA) to investigate possible cases of 
syphilis. Treponema tests target treponema pallidum-
specific proteins, and many current commercial tests 
mainly use T. pallidum antigens (Tp15, Tp17, and Tp47) 
to detect IgM, IgG, or both. Here we summarize a large 
number of serological diagnostic candidate antigen stud-
ies [5–15] (Table 1). Besides, the response intensity and 
rate of antibody production to these candidate antigens 
may also serve as sensitive indicators for the early diag-
nosis of syphilis. Despite the fact that these antigens are 
useful in the serological diagnosis of syphilis, treponeme-
specific diagnostics such as enzyme-linked immunosorb-
ent assay (ELISA) are unable to evaluate syphilis therapy. 
Notably, Zhao discovered a highly significant positive 
association between the difference in A450 nm values for 
Tp0971 and the RPR titre change before and after syphi-
lis treatment, indicating the potential of Tp0971 in the 
assessment of the effectiveness of syphilis therapies [9].

Diagnosis by nucleic acid amplification test (NAAT)
In particular, NAAT has gained popularity for diagnosing 
infectious disorders caused by organisms that are difficult 
to culture. Researchers have been increasingly turning 
to NAAT as a means of detecting T. pallidum DNA in a 
wide range of sample types and disease states. Figure  1 
graphically depicts the use of the nucleic acid amplifica-
tion test in the diagnosis of syphilis. NAAT mainly aims 
at three target genes of T. pallidum, including the DNA 
polymerase I gene (polA), Tp47(tp0574), and bmp [16–
18]; besides, 16S rRNA, tmpC, and tmpA were involved 
[19, 20]. Some studies showed that five types of NAAT, 
including routine PCR, real-time PCR (qPCR), reverse 
transcription PCR (RT-PCR), nested PCR (nPCR), drop-
let digital PCR (ddPCR), and loop-mediated isothermal 
amplification (LAMP) assays could be used to diagnose 
syphilis [17, 21–25]. In parallel, a recent study developed 
assays that pair PCR pre-amplification of the tp0574 gene 
of T. pallidum with CRISPR-LwCas13a, which outper-
formed tp0574 real-time PCR and rabbit-infectivity test-
ing in terms of sensitivity and specificity [26]. In addition 
to blood and CSF, scholars have begun to detect T. pal-
lidum DNA in other types of specimens, such as saliva, 
atrial fluid (aqueous humor), urine, semen, oropharynx, 
and anorectum, during early syphilis stages as a proxy 
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for transmissibility [25, 27–30]. It’s important to note 
that nPCR has far greater specificity and sensitivity than 
traditional PCR, notably in seronegative individuals and 
those with discrepant serology [24]. In a recent study, 
researchers found that T. pallidum DNA could be identi-
fied in saliva at all syphilis stages, with greater detection 
rates in saliva than in plasma, with the exception of pri-
mary syphilis [27]. Saliva samples may be a sensitive diag-
nostic fluid for syphilis, and they also have the benefits of 
being convenient and non-invasive, making them a viable 
approach for monitoring T. pallidum DNA elimination 
as an indication of therapy efficacy [27]. Additionally, 
T. pallidum DNA in urine was detectable in individuals 
throughout the spectrum of syphilis severity, and loads 

were larger in urine sediment than in urine supernatant. 
Patients with both primary and secondary syphilis have 
a high chance of detection. Obtaining a large quantity of 
T. pallidum DNA from urine may be a good idea due to 
the sample’s abundance and the ease with which it may 
be collected [25].

T. pallidum can be diagnosed in part by targeting its 
DNA, but mRNA or non-coding RNAs (ncRNAs) can 
also be targeted for complementary diagnosis. Infec-
tion with T. pallidum may induce tissue damage, and 
microRNAs have a regulatory function in the immune 
response to T. pallidum infection. Recent research has 
demonstrated that T. pallidum infection increases the 
expression of miR-101-3p, inhibiting the TLR2 signaling 

Fig. 1  Diagnosis by nucleic acid amplification test (NAAT). Molecular assays with nucleic acid amplification tests (NAAT) are used for direct 
detection to improve diagnostic sensitivity. Types of NAAT include polymerase chain reaction (PCR), nested PCR, quantitative PCR, reverse 
transcriptase PCR, and droplet digital PCR (ddPCR). Notably, nPCR has a higher specificity and sensitivity than conventional PCR, especially 
in seronegative and serologically different individuals. In addition to blood and cerebrospinal fluid (CSF), scholars have begun to explore other types 
of specimens, such as tissue or lesional smears, saliva, urine, aqueous humor, semen, amniotic fluid, and placental tissue. NAAT mainly aims at three 
target genes of T.pallidum, including the DNA polymerase I gene (polA), Tp47(tp0574), and bmp; besides, 16S rRNA, tmpC, subsurface lipoprotein 
4D (4D), and tmpA were involved. T. pallidum can be diagnosed in part by targeting its DNA, but mRNA or non-coding RNAs (ncRNAs) can also be 
targeted for complementary diagnosis
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pathway and resulting in decreased cytokine production 
[31]. Furthermore, miRNA expression differed in periph-
eral blood mononuclear cells (PBMCs) at various phases 
of T. pallidum infection [32]. As a result, the microRNAs 
in PBMCs might singly or jointly be potential diagnostic 
biomarkers at different stages of syphilis [31–35]. MiR-
195-5p, miR-101-3p, and miR-223-3p alone or in combi-
nation can specifically distinguish syphilis patients from 
non-syphilis patients [32, 33]; miR-101-3p can be used as 
a diagnostic biomarker for patients with primary syphilis 
[31]. Additional research has indicated that miR-142-3p 
is a promising PBMC-based specific biomarker for sec-
ondary syphilis [34]. In addition, miR-338-5p and miR-
101-3p can be used as diagnostic indicators of serofast 
state [31, 35]. Interestingly, miR-195-5p, miR-223-3p, and 
miR-589-3p showed significant differences in the diagno-
sis of serofast and serologically cured states [32]. Micro-
RNAs may be employed as a non-invasive biomarker of 
T. pallidum infection to aid in the diagnosis of the dis-
ease. However, further research is required before clinical 
applications may be realized.

The most often used non-treponemal test for neu-
rosyphilis is CSF-VDRL. A positive CSF-VDRL test is 
regarded neurosyphilis diagnostic, while a negative result 
does not rule out the diagnosis. Numerous studies have 
shown that high concentrations of CXCL13 in the CSF 
may be possible biomarkers of neurosyphilis, especially 
for asymptomatic neurosyphilis, adding to the growing 
list of diagnostic molecular markers for syphilis. CXCL13 
has other interesting applications, including treat-
ment monitoring in neurosyphilis [36]. Elevated con-
centrations of CXCL8, CXCL10, and IL-10 may also be 
potential biological markers of neurosyphilis, especially 
asymptomatic neurosyphilis [37–39]. Meanwhile, the 
increased levels of CXCL9, CXCL7, CCL24, IL-17, IL-26, 
and migration inhibitory factor (MIF) of macrophages in 
the CSF of neurosyphilis patients suggested their role as 
promising differential diagnostic tools for neurosyphilis 
[37, 40–42]. Although these cytokine changes are still 
in their infancy for the diagnosis of neurosyphilis, their 
importance cannot be ignored due to the lack of ideal 
neurosyphilis biomarkers.

Histological diagnosis
For almost a decade, modern mass spectrometry has 
been used in the biological study of human metabolites 
and proteins (proteomics and metabolomics, respec-
tively). However, the use of mass spectrometry to diag-
nose syphilis is still in its infancy. High-sensitivity 
proteomics, which relies on mass spectrometry (MS) 
to identify proteins, has, however, been a major driv-
ing force. In recent years, an MS-based approach has 
been successfully applied in numerous clinical microbial 

protein screening studies. In the past decades, research-
ers have also used pre-MS analysis based on gel technol-
ogy to identify T. pallidum protein peptides. In 2016, 
McGill first studied the purified T. pallidum proteome 
using matrix-assisted laser desorption /ionization time 
of flight (MALDI-TOF/TOF) and electrospray ionization 
(ESI-LTQ-Orbitrap), which identified 557 unique T. palli-
dum proteins [43]. Subsequently, two different MS-based 
proteomics approaches were used to analyze T. pallidum 
proteins in urine samples from syphilis patients, yield-
ing the identification of 26 peptides corresponding to 
four T. pallidum proteins [44]. Interestingly, identifica-
tion of T. pallidum-specific proteins in sera of syphilis 
patients based on liquid chromatography coupled with 
tandem mass spectrometry (LC–MS/MS) also revealed 
high expression levels and low homology of Tp0369 [45], 
strongly suggesting that Tp0369 is a promising candidate 
peptide target for syphilis early diagnosis, so as to over-
come the nonspecific problem of antigen detection [44, 
45].

Global metabolomics analysis can provide substantial 
information on possible diagnostic biomarkers for patho-
gens. The metabolite profile of cerebrospinal fluid (CSF) 
from neurosyphilis patients determined by untargeted 
metabolomic analysis showed significant differences 
in d-mannose, l-gulono-gamma-lactone, S-methyl-5ʹ-
thioadenosine, hypoxanthine, and N-acetyl-l-tyrosine, 
with the largest difference in N-acetyl-l-tyrosine by the 
student’s t test [46]. In addition, LC–MS revealed that 
the levels of bilirubin, l-histidine, prostaglandin E2, 
alpha-kamlolenic acid, butyryl-l-carnitine, and palmi-
toyl-l-carnitine were significantly reduced in the CSF 
of neurosyphilis patients, suggesting them to be novel 
potential biomarkers of neurosyphilis [47]. Untargeted 
metabolomic analysis of neurosyphilis patient serum 
revealed that several metabolites, including trimethyl-
amine N-oxide, l-arginine, lysoPC (18:0), betaine, and 
acetylcarnitine, were significantly higher in syphilis 
patients than in healthy controls, with trimethylamine 
N-oxide being the best candidate metabolic biomarker to 
differentiate the sera of syphilis patients and healthy con-
trols [48]. A rise in oxidative stress products (AOPP, car-
bonyls) and nitrosative stress markers (nitrates/nitrites) 
in the sera of syphilis patients has been observed since 
the disease’s earliest stages. These differential metabo-
lites, which could potentially improve neurosyphilis 
and syphilis diagnostics in the future, deserve further 
exploration.

Others in diagnosis
Syphilis can be diagnosed by a number of different 
methods, such as those listed above as well as morpho-
logical observation, immunohistochemistry (IHC), the 
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rabbit infectivity test (RIT), and in  vitro culture. Dark-
field microscopy (DFM) or direct fluorescent antibody 
(DFA) testing is the primary method of morphological 
observation [4]. This allows for the direct identification 
of spirochetes with characteristic shapes and move-
ments from lesion exudate. When serologic tests fail 
to find T. pallidum antibodies, immunohistochemis-
try (IHC) might be used as a supplement. Although the 
IHC approach has high specificity for secondary syphilis, 
its sensitivity varies from 49 to 92% [49]. Furthermore, 
immunohistochemistry requires specific equipment and 
stains, might cross-react with different spirochetes, and 
yields subjective results [50]. T. pallidum could also be 
detected in tissue from mucocutaneous syphilis lesions at 
all stages using a combination of focus-floating micros-
copy (FFM) and polymerase chain reaction (PCR), which 
is a speedy, reliable, economical, and enhanced immuno-
histochemical technique [51]. The New Zealand White 
(NZW) rabbit has long been recognized as the most use-
ful practical animal model for determining in vivo infec-
tivity of T. pallidum [51], and for good reason. While RIT 
was formerly considered a gold standard for the sensi-
tive detection of T. pallidum in clinical samples, it is no 
longer used as such and is instead used as a benchmark 
against which the sensitivity of more modern techniques 
like PCR is evaluated. T. pallidum has been cultured 
in  vitro for extended periods of time using a technique 
based on TpCM-2 media and the Sf1Ep co-culture sys-
tem [52]. To effectively identify and diagnose syphilis, 
this method will need more development, although it 
shows great promise.

Antibiotics and treatment regimens
For a long time, benzathine penicillin G (BPG), admin-
istered by injection, has been the preferred drug for the 
treatment of patients at all stages of syphilis. The prepa-
ration used (i.e., benzathine, aqueous procaine, or aque-
ous crystalline), dosage, and length of treatment depend 
on the stage and clinical manifestations of the disease. A 
single dose of long-acting benzathine penicillin G of 2.4 
million units, each side of the intramuscular injection 
of 1.2 million units, is an effective treatment for early 
stage syphilis (primary and secondary syphilis and early 
latent syphilis), whereas 2.4 million units administered 
intramuscularly weekly for 3 consecutive weeks is rec-
ommended for late latent syphilis and tertiary syphilis. 
Some experts recommend that primary, secondary, and 
early latent cases be treated with two doses of long-acting 
benzathine penicillin G 2·4 million units one week apart, 
particularly in the third trimester [53]. Short-acting peni-
cillin agents are not adequate to cure syphilis. Table  2 
details the recommended and alternative syphilis treat-
ment regimens from the Centers for Disease Control and 

Prevention (CDC). Notably, HIV-positive patients with 
early syphilis are more likely to have cerebrospinal fluid 
abnormalities than HIV-negative patients, so all people 
infected with HIV and syphilis should undergo care-
ful neurologic ocular and otic examination tests [54]. 
However, HIV status does not affect the CDC treatment 
recommendations for all stages and for neurosyphilis, 
ocular, and otic syphilis. People with HIV and neurosyph-
ilis should be treated according to the recommendations 
for persons with neurosyphilis and without HIV infec-
tion. Besides, available data suggest no clinical benefit to 
multiple doses of benzathine penicillin G for early syphi-
lis in HIV-positive patients [55]. Interestingly, in HIV-
infected people with early syphilis, a single dose of BPG 
plus doxycycline achieved a better serologic response 
than a single dose of BPG [56]. In addition, intravenous 
penicillin G is the only documented effective treatment 
for syphilis in pregnancy, and penicillin G is also the only 
known effective antibacterial agent for the treatment of 
fetal infection and the prevention of congenital syphilis. 
Pregnant women with syphilis at any stage who report a 
penicillin allergy should be desensitized and treated with 
penicillin. The treatment of congenital syphilis and neu-
rological syphilis will not be discussed in this section due 
to their complexity.

Effective non-penicillin-based regimens are required 
in patients with penicillin allergies, would provide alter-
native treatments during shortages of penicillin, and 
might be more conducive to administration and outpa-
tient management. Doxycycline, tetracycline, and ceftri-
axone can be used as substitutes for people who cannot 
use penicillin. The clinical and serologic outcomes of oral 
doxycycline treatment are similar to those of penicillin-
based therapy, but a randomized controlled trial is neces-
sary to determine the effectiveness of doxycycline in the 
treatment of early neurosyphilis. There have been other 
trials showing that doxycycline is effective in treating 
syphilis and syphilitic uveitis in pregnant women who 
were unable to undergo a penicillin desensitization [57, 
58]. Additionally, there is increasing interest in using 
doxycycline for prophylaxis of this infection. T. palli-
dum showed a significant level of susceptibility to doxy-
cycline in  vitro, and post-exposure prophylaxis (PEP) 
with doxycycline has been shown to be effective in pre-
venting syphilis infection [59, 60]. Since tetracycline has 
more frequent dose requirements and more potential for 
gastrointestinal adverse effects, compliance is probably 
better with doxycycline than tetracycline [61]. Addition-
ally, in both latent and primary syphilis patients, the cef-
triaxone regimen has been shown to be noninferior to 
the BPG regimen. Syphilitic uveitis, neurosyphilis, and 
ocular syphilis, as well as syphilis-related membranous 
nephropathy, may respond well to ceftriaxone treatment 
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in the absence of penicillin G [62–65]. However, the 
data are insufficient to recommend ceftriaxone or other 
cephalosporins for treatment of maternal infection and 
prevention of congenital syphilis [66]. More caution 
is needed when administering ceftriaxone to patients 
who are also allergic to penicillin due to the possibil-
ity of cross-allergy. The effectiveness, ideal dosage, and 
duration of amoxicillin in patients with various stages of 
syphilis must still be determined by additional research.

It is worth mentioning that, while researchers continue 
to investigate new syphilis treatment options, the emer-
gence of worldwide antibiotic resistance requires us to 
pay attention. The genomic epidemiology of syphilis has 
revealed the independent emergence of macrolide resist-
ance in several circulating lineages [67, 68]. According to 
research published in the 23S rRNA gene of T. pallidum, 
both A2058G and A2059G mutations are associated with 
failure of macrolide treatment [69]. These mutations are 
widespread throughout the world [70]. In addition, BPG 
was effective in NZW rabbits infected with strains har-
boring 23S rDNA mutations, but azithromycin failed 
[71]. Consequently, azithromycin cannot be used as an 
alternate therapy for syphilis patients at this time, despite 
the advice of recommendations [70]. In comparison to 
A2059G, the mutation A2058G confers macrolide resist-
ance more commonly. Nevertheless, no strains with both 
mutations have been reported to date. In addition, the 
acquired tetracycline resistance gene tetB was amplified 
from the total DNA of a reliable number of T. pallidum-
positive samples (i.e., 15/171) collected between 2014 
and 2015 in Shandong province, and no point mutations 
in the 16SrRNA gene were detected. Tetracyclines have 
been proposed as an alternative to BPG for the treat-
ment of syphilis; nevertheless, there is concern about the 
potential emergence of tetracycline-resistant strains of T. 
pallidum. Table 3 summarizes in detail the mutation sites 
associated with drug resistance in T. pallidum strains. 
With the emergence and spread of resistant T. pallidum, 
the availability of treatment options is decreasing. Fortu-
nately, there is still no evidence of penicillin resistance. 
Hence, penicillin is the recommended course of treat-
ment for syphilis.

Vaccines
Research on a vaccine against T. pallidum has moved at a 
slower pace than that into vaccines against other diseases. 
T. pallidum’s outer membrane is fragile, in  vitro mass 
growth of T. pallidum is challenging, and the mature use 
of transgenic procedures all limit the relevant technology, 
making further advances in this area necessary. Vaccines 
against T. pallidum are currently available in a variety of 
forms, including live attenuated, inactivated, DNA, and 
recombinant proteins (Table 4).

Inactivated and live attenuated vaccines
Metzger first demonstrated that T. pallidum could pro-
duce partial protection by immunizing NZW rabbits 
with T. pallidum stored at 4  °C, heated at 100  °C, or 
treated with penicillin by either intravenous or intrader-
mal injections[72]. Miller claims that inoculating NZW 
rabbits with a radioactively inactivated form of T. pal-
lidum provided them with protection against infection 
for a year. In clinical trials, this vaccine has been demon-
strated to be more effective than any other in preventing 
the disease. One of the limitations of inactivated vaccines 
is that large quantities of T. pallidum are not available for 
use. An improved in vitro cell co-culture method and the 
first attempt at genetic engineering of T. pallidum have 
opened up many possibilities, including providing T. pal-
lidum for inactivated vaccines and possibly even target-
ing virulence factors responsible for immune escape and 
persistence to obtain attenuated strains to inform vac-
cine development efforts [52, 73]. However, difficulties 
in producing large-scale in  vitro cultures have impeded 
the future development of inactivated and live-attenuated 
vaccines.

DNA vaccines
As mentioned previously, Tp92 + IL-2, Gpd + IL-2, and 
FlaB3 immunized NZW rabbits displayed attenuated 
lesions as well as significant decreases in blood, liver, 
spleen, and testis T. pallidum levels [74–76]. It should be 
noted, however, that DNA vaccines are at risk of inser-
tional mutagenesis, which occurs when exogenous genes 
are incorporated into the chromosomes of host cells and 
can lead to immunological tolerance after several appli-
cation sessions.

Recombinant protein vaccines
Vaccines made from recombinant proteins have been the 
subject of much research and testing, since they are free 
of potentially dangerous active components and can be 
mass-produced at a low price. The first step in creating a 
T. pallidum protein vaccine is to screen and investigate T. 
pallidum proteins that interact with host cells during the 
first stages of infection. Growing evidence suggests that 
T. pallidum’s early adherence and colonization of target 
cells in hosts is crucial to the establishment of its even-
tual syphilis, which is connected with immune escape 
and immunological tolerance in the chronic systemic 
infection of syphilis. Thus, the outer membrane proteins 
and various membrane lipoproteins of the T. pallidum 
that are the earliest to come into direct contact with 
host cells have become the focus of research on T. pal-
lidum vaccines[77]. In particular, rare outer membrane 
proteins of T. pallidum (e.g., Tp92) and adhesins that 
bind to extracellular matrix proteins (e.g., Tp0751 and 
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Tp0136). Besides, numerous studies have also confirmed 
that the outer membrane proteins Tp92, Tp0769, Tp0663, 
and TprK; and the outer membrane lipoproteins Tp0751 
and Tp0136 can all induce partial protective immunity 
[78–81].

Only Tp92 of T. pallidum has sequence similarity 
with gram-negative outer membrane proteins (OMPs). 
There is a considerable degree of homology between 
the amino acid sequences of Tp92 from 11 different 
strains representing 4 different pathogenic treponemes, 
and vaccination with recombinant Tp92 provides some 
immunological protection for NZW rabbits against 
T. pallidum infection [78]. TprK (Tp0897) is a target of 
opsonic antibodies and the protective immune response 
since it is one of T. pallidum’s rare outer membrane pro-
teins (REMP). T. pallidum relies heavily on antigenic 
variation to evade the immune system, and the TprK 
variable regions have been shown to be an important 
target of the humoral immune response during experi-
mental infection. A recent study found that immuniza-
tion with the recombinant protein TprK dramatically 
reduced the frequency of lesions, sped up the healing 
process, and slowed the progression of cutaneous lesions 
from early stages to ulceration [80, 82]. In addition, 

Nikhat Parveen found that immunizing NZW rabbits 
with non-pathogenic B. burgdorferi expressing TprK 
resulted in a robust humoral response and partial protec-
tion [82]. It is important to remember that TprK displays 
a great deal of variation both across and within strains. 
This gene’s sequence diversity is partitioned into seven 
distinct variable (V) regions (V1–V7) that are separated 
by conserved sequences. Additional genomic sequenc-
ing showed that individuals with primary and secondary 
syphilis had substantial variability at the intrastrain level 
in V6 [83]. Meanwhile, rabbits pre-immunized with V6 
region synthetic peptides had a more rapid accumulation 
of V6 variant treponemes than control rabbits [84]. Fur-
thermore, the amino acid sequences of V6 also presented 
increased diversity at the interstrain level over time dur-
ing T. pallidum infection [85]. Consequently, V6 may be 
the initial region to alter in primary syphilis samples. 
Recent genome sequencing has shown even more varia-
tion in genes like TprK that are candidates for vaccines, 
laying the groundwork for vaccine development [86]. 
Besides, the homologous protein family of Tpr, includ-
ing TprL, TprC, and TprD, also has potential for vac-
cine development [87, 88]. Immunization of guinea pigs 
with Tp0769 (also known as TmpB) induces protection 

Table 3  Mutant loci associated with drug resistance of T. pallidum strains

Resistance type Resistance gene Mutation position Country/city Mutation 
rates (%)

Collection year References

Macrolide resistance 23S rRNA A2058G Hunan, China 97.5 2013–2015 [113]

A2058G Guangxi Zhuang Autonomous 
Region, China

91.0 2012–2014 [114]

A2058G Xiamen, China 100 2016–2017 [115]

A2058G Cuba 61 2012–2015 [116]

A2058G Sydney, Australia 84 2004–2011 [117]

A2058G Czech 86.7 2004–2017 [118]

A2058G Tuva Republic, Russia 2.4 2013–2014 [119]

A2058G Buenos Aires, Argentina 9.5 2006–2013 [120]

A2058G Manitoba, Canada 97.3 2012–2016 [121]

A2058G Northern Italy 92.5 2016–2017 [122]

A2058G Japan 83 2017 [123]

A2058G Barcelona, Spain 99.1 2015 [124]

A2058G France 85 2012–2017 [125]

A2058G Brazilian Marajó Archipelago 14.8 2018–2019 [126]

A2058G Southern Africa 23 2008–2018 [127]

A2059G Czech 3.3 2004–2017 [118]

A2059G Buenos Aires, Argentina 4.8 2006–2013 [120]

A2059G Northern Italy 1.9 2016–2017 [122]

A2059G Manitoba, Canada 2.7 2012–2016 [121]

A2059G Barcelona, Spain 0.9 2015 [124]

A2059G Brazilian Marajó Archipelago 16.2 2018–2019 [126]

Tetracycline resistance tetB – Shandong, China 8.8 2014–2015 [128]
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against T. pallidum infection [89]. In addition, NZW rab-
bits immunized by Tp0136 exhibited increased specific 
antibody titers, attenuated lesion development, increased 
cellular infiltration at the lesion sites, and inhibition of 
treponemal dissemination to distant organs compared 
to the unimmunized animals [79, 90]. Popliteal lymph 
nodes were transplanted from killed rabbits with healed 

syphilitic lesions; however, DFA showed the presence of 
T. pallidum in the testicles of all inoculated rabbits [90]. 
This suggests that anti-Tp0136 antibodies may not be 
protective. When compared to Tp0136-immunized and 
unimmunized rabbits, Tp0663-immunized rabbits had 
a significantly lower treponemal load at the main lesion 

Table 4  Studies on antigens for T.pallidum vaccines

rTP protein, recombinant Treponema pallidum protein; OMP, outer membrane protein; Partial, partial protection

Vaccine type TP/rTP protein Inactivation 
metho/
characteristics

Adjuvant Immunization 
dosage and route

Ulcer rate (%) Immunization 
effect

References

Inactivated vac-
cines

T. pallidum Stored at 4 ℃, 
for from 7 
to 10 days

None 8 × 109/Iv 0 Part of the sam-
ples were positive 
for lymph node 
metastasis

[72]

T. pallidum Deal with penicil-
lin added stored 
at 37℃ for 24 h 
and at 4 °C 
for an additional 6 
to 9 days

None 8 × 109/Iv 0.20 Partial [72]

T. pallidum Ultraviolet light None 3.7 × 109/Iv 0 Complete [129]

DNA vaccine pcDNA3/FlaB3 – None 3 × 150 μg/Im 20 Partial [76]

Tp92 OMP, highly 
conserved, highly 
homologous

None
IL-2
IL-2 + CS
CS

3 × 100 μg/Im 30
10
7.5
25

Partial [74]

Gpd Lipoprotein, binds 
to the opsonin 
antibody, correlated 
with immune 
escape

None
IL-2
CS
Cs + IL-2
CpG + IL-2

3 × 100 μg/Sc
100 μg Gpd-IL-2/
Im + Gpd-IL-2 + CpG/
Nasal

37.5
10
40
4.17
8.3

Partial [75]

Subunit vaccine FlaB3 Associated 
with pathogen 
diffusion

Freund’s 3 × 150 μg/Im 14.29 Partial [76]

Tp0136 OMP, lipoprotein, 
adhesion protein

Freund’s 3 × 150 μg/Sc 12.5 Partial [79]

Tp0136 OMP, lipoprotein, 
adhesion protein

Titer Max Gold 500 μg + 3 × 250 μg/
Sc + Im

92.5 No protection [90]

Tp0126 OMP (OmpW 
family)

mSAS 5 × 250 μg/Id, Im, sc 100 No protection [92]

Tp0663 OMP Freund’s 3 × 150 μg/Sc 0 Partial [79]

Tp0715 Adhesive, associ-
ated with pathogen
Colonization

TiterMax Gold 4 × 5.2 μg/
Sc + 2 × 13 μg/Iv

47 Complete [81]

Heterologous 
Expression in Bor-
relia burgdorferi

TprK OMP, undergoes 
antigenic varia-
tion at 7 variable 
regions, and vari-
ants are selected 
by immune pres-
sure

None 1010/Im 44 Partial [82]

Tp0435 Lipoprotein, a peri-
plasmic antigen 
that was also 
shown on the path-
ogen surface

None 1010/Im 100 No protection [82]
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sites; and the chancre displayed in Tp0663-immunized 
rabbits healed more rapidly [79].

However, whether Tp0751 is a feasible immuniza-
tion candidate is still up for debate. In a study done by 
Karen V. Lithgow, Tp0751 immunization was found to 
lessen the severity of lesions, slow the spread of T. pal-
lidum, and cause more immune cells to gather at the sites 
of lesions. What’s exciting is that lymph nodes collected 
from Tp0751-immunized NZW rabbits failed to cause 
productive infection when injected into naive NZW rab-
bits [81]; on the other hand, Amit Luthra demonstrated 
that immunization with Tp0751, a bipartite T. pallidum 
lipoprotein with an intrinsically disordered region and 
lipocalin fold, fails to induce regulatory or protective 
antibodies in the rabbit model of experimental syphilis 
[91]. Future confirmation of the immunoprotective char-
acteristics of Tp0751 might necessitate the use of novel 
approaches, such as genetic modification.

Other T. pallidum recombinant proteins have been 
shown to elicit powerful antibody or T-cell immune 
responses that suppress the progression of syphilitic 
lesions; these include Tp0126, Tp0821, TpGpd, TprI, 
Tp17, and the extracellular loop (ECL) of Tp0856 and 
Tp0858 [5, 82, 92–94]. While more research is needed 

to confirm that the aforementioned recombinant pro-
teins indeed have immunoprotective properties, the 
data presented here should be useful in shaping future 
vaccine research.

Preclinical models
Despite the availability and evidence-based treatment 
option of penicillin for more than 70  years, syphi-
lis remains a public health threat. At the same time, 
due to practical and ethical considerations, research 
on therapeutic interventions and vaccine develop-
ment for human subjects is limited. Therefore, relevant 
preclinical models are needed to investigate vaccine 
development and new treatments for syphilis. Preclini-
cal models also play a key role in clinical transforma-
tion. The ability to conduct both forward translation, 
the process of translating basic research findings into 
practice, and reverse translation, the process of eluci-
dating the mechanistic basis of clinical observation, 
will greatly improve the ability to develop effective 
anti-syphilis control strategies [95]. In addition to 
the routinely used cell lines and primary cell models 
(peripheral blood or bone marrow), a series of novel 

Fig. 2  Preclinical models. At present, the commonly used preclinical syphilis models include heterologous expression models, in vitro culture 
models, and animal models. Heterologous expression models, such as Borrelia burgdorferi, oral spirochete Treponema, and Treponema phagedenis, 
contributed to identifying and determining the functional characteristics of T. pallidum proteins. Tp0435, Tp0954, and Tp0751 were identified 
as adhesins by a Borrelia burgdorferi heterologous expression system and adhered to mammalian endothelial cells and placental cell lines. The 
first long-term in vitro culture of T. pallidum was reported in 2018. This system utilized coincubation of the T. pallidum with Sf1Ep cottontail rabbit 
epithelial cells in a microaerobic environment containing 1.5% oxygen and 5% CO2. An altered medium, TpCM-2, is very important; the principal 
modification was the replacement of the basal medium, Eagle’s minimal essential medium (Eagle’s MEM), with a more complex tissue culture 
medium, CMRL 1066. Successful models of T. pallidum infection have been established in a variety of animals, including the NZW rabbit, nonhuman 
primate (NHP) (macaque), LSH hamster, guinea pig, and mouse. In light of its convenience and inexpensive cost, the NZW rabbit model of T. 
pallidum infection is favored by scientists. Although T. pallidum can successfully infect mice, it lacks obvious clinical manifestations. As a result, 
further study is required before mice may be used as a model for syphilis research. Preclinical models are utilized in studies on the underlying 
features and pathophysiology of T. pallidum infection, and they may be exploited to produce cutting-edge diagnostics and vaccines
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experimental models, such as in  vitro culture and 
mouse models (Fig. 2), have recently emerged.

Heterologous expression models
Before in  vitro co-culture systems were developed, sev-
eral heterologous expression models, such as Borrelia 
burgdorferi, oral spirochete Treponema, and Treponema 
phagedenis, contributed to identifying and determining 
the functional characteristics of T. pallidum proteins. 
The extracellular pathogen Borrelia burgdorferi, which 
can also cause systemic diseases, seems to be the best 
model. Borrelia burgdorferi serves as a model organism 
because both Tp0435 and Tp0954 have been shown to 
act as adhesins and adhere to mammalian ECs, gliomas, 
and placental cell lines [96, 97]. In addition, Tp0751, het-
erologously expressed by strains of Borrelia burgdorferi, 
not only mediates spirochete attachment to endothelial 
cells, but also plays a role as a vascular adhesin [98, 99]. 
Interestingly, a strong humoral response was observed 
by Parveen in NZW rabbits immunized against non-
pathogenic Borrelia burgdorferi expressing TprK and was 
partially protective [82]. Further advancements in in vitro 
culture systems and genetic manipulation technologies 
may eventually replace the heterologous expression sys-
tem of Borrelia burgdorferi, which has the potential to 
characterize the functional properties of T. pallidum pro-
teins and virulence factors.

In vitro culture models
T. pallidum is one of the few pathogenic bacteria that 
is notoriously challenging to culture in  vitro, as is well-
known. A system consisting of T. pallidum coculture with 
cottontail rabbit epithelium (Sf1Ep) was initially pro-
posed in the early 1980s, but T. pallidum could only sur-
vive in vitro for 1 to 2 weeks [100]. Recently, Edmondson 
et  al. have found that T. pallidum could be consistently 
cultured in a modified Sf1Ep co-culture system, in which 
continuous growth of T. pallidum in vitro was dependent 
upon co‐culture with Sf1Ep cottontail rabbit epithelial 
cells in a specialized tissue culture medium (T. pallidum 
culture medium 2, or TpCM‐2) under microaerobic con-
ditions (a GasPak™ 150 vented anaerobic jar [Brewer jar] 
filling with 1.5% O2, 5% CO2, and 93.5% N2) ever since 
2018 [52, 101]. T. pallidum’s remarkable in vitro culture 
system greatly aided in the creation of genetic tools. With 
the help of homologous recombination, Romeis et  al. 
were able to replace the TprA (Tp0009) pseudogene in 
the SS14 T. pallidum strain with a kanamycin resistance 
(kanR) cassette [73]. This discovery will allow the appli-
cation of functional genetics techniques to study syphilis 
pathogenesis and improve syphilis vaccine development.

Animal models
In addition, scientists may learn more about syphi-
lis’s causes, cures, and prevention methods with the 
use of animal models. Successful models of T. palli-
dum infection have been established in a variety of ani-
mals, including the NZW rabbit, nonhuman primate 
(NHP) (macaque), LSH hamster, guinea pig, and mouse 
[102–105]. As far as we know, the NZW rabbit and the 
NHP model (macaques) are the only animals whose 
syphilis phenotypes (lesions) are most comparable to 
those seen in humans [102, 103]. In light of its conveni-
ence and inexpensive cost, the NZW rabbit model of T. 
pallidum infection is favored by scientists. For isolating 
novel strains of T. pallidum from clinical samples, the 
NZW rabbit model is also crucial [106]. Therefore, the 
rabbit model is not only the best animal model for study-
ing syphilis vaccine candidates, but also the most widely 
used model by researchers, as it allows for in-depth 
pathogenesis research, evaluation of new therapies, and 
testing of potential vaccine candidates [81, 91]. Never-
theless, genetic modification of rabbit models is more 
challenging; as technology advances, CRISPR/Cas9 may 
help alleviate this difficulty. The first transgenic rabbit 
line was created in 1985, and in 2014, CRISPR/Cas9 was 
successfully used to create gene-knockout rabbits [107]. 
It is also worth noting that the present assembly of the 
rabbit genome is still incomplete. Off-target effects are a 
major problem with the Cas9 system for gene targeting. 
It is expected that the researchers will be able to produce 
viable models of immunodeficient and knockout rabbits 
for use in syphilis studies in the near future.

Despite the importance of rabbit models, their use is 
still limited compared to mice. Mice models have become 
powerful tools for many studies, in large part due to the 
lower variability between individuals, the lower cost, 
and the wide availability of reagents. A syphilitic infec-
tion model in C57BL/6 mice has been developed recently 
[105]. The study has shown that T. pallidum can colo-
nize the heart, liver, spleen, kidney, testis, and brain of 
C57BL/6 mice after infection, but the inflammatory 
response of C57BL/6 mice after infection is mild and 
lacks obvious clinical manifestations [105]. As a result, 
further study is required before mice may be used as a 
model for syphilis research.

Conclusion and outlook
Clinical strategies for the diagnosis, control, and preven-
tion of T. pallidum have advanced in sophistication with 
the growing understanding of its pathogenic mecha-
nisms. The diagnosis of syphilis is complex, and serologi-
cal testing is still the gold standard for the diagnosis of 
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syphilis patients. It is worth noting that NAAT may be 
a promising method for detecting T. pallidum DNA in 
syphilis patient samples. In addition to the routine diag-
nosis of syphilis by NAAT in blood and CSF, scholars 
have recently begun to experiment with biomarker and T. 
pallidum DNA testing in other specimen types as a proxy 
for transmissibility, including saliva, saliva, urine, semen, 
oropharynx, and anorectum. Recently, researchers have 
developed a PCR-LwCas13a syphilis assays that may offer 
a promising alternative to sequencing-based methods 
for molecular surveillance and drug resistance genotyp-
ing. As metabolomics and proteomics breakthroughs are 
made, biomarkers based on those technologies are also 
being found to be exciting. Meanwhile, vaccines for syph-
ilis have recently been developed, mainly targeting outer 
membrane proteins and various membrane lipoproteins 
of T. pallidum. The Tpr paralogous homologous protein 
family, including TprK, TprL, TprC, and TprD, has also 
been extensively studied through genome sequencing 
and bioinformatics analysis of the most common strains 
in clinical practice, providing a favorable basis for future 
vaccine studies. In addition, with the development of T. 
pallidum in  vitro culture and genetic modification of 
these preclinical models, it will further provide more 
rapid, accurate, and effective methods for the diagnosis, 
treatment, and prevention of syphilis.
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