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Abstract 

Background  Sepsis is a life-threatening organ dysfunction caused by abnormal immune responses to various, 
predominantly bacterial, infections. Different bacterial infections lead to substantial variation in disease manifestation 
and therapeutic strategies. However, the underlying cellular heterogeneity and mechanisms involved remain poorly 
understood.

Methods  Multiple bulk transcriptome datasets from septic patients with 12 types of bacterial infections were 
integrated to identify signature genes for each infection. Signature genes were mapped onto an integrated large 
single-cell RNA (scRNA) dataset from septic patients, to identify subsets of cells associated with different sepsis types, 
and multiple omics datasets were combined to reveal the underlying molecular mechanisms. In addition, an scRNA 
dataset and spatial transcriptome data were used to identify signaling pathways in sepsis-related cells. Finally, molecu-
lar screening, optimization, and de novo design were conducted to identify potential targeted drugs and compounds.

Results  We elucidated the cellular heterogeneity among septic patients with different bacterial infections. In Escheri-
chia coli (E. coli) sepsis, 19 signature genes involved in epigenetic regulation and metabolism were identified, of which 
DRAM1 was demonstrated to promote autophagy and glycolysis in response to E. coli infection. DRAM1 upregulation 
was confirmed in an independent sepsis cohort. Further, we showed that DRAM1 could maintain survival of a pro-
inflammatory monocyte subset, C10_ULK1, which induces systemic inflammation by interacting with other cell 
subsets via resistin and integrin signaling pathways in blood and kidney tissue, respectively. Finally, retapamulin 
was identified and optimized as a potential drug for treatment of E. coli sepsis targeting the signature gene, DRAM1, 
and inhibiting E. coli protein synthesis. Several other targeted drugs were also identified in other types of sepsis, 
including nystatin targeting C1QA in Neisseria sepsis and dalfopristin targeting CTSD in Streptococcus viridans sepsis.

Conclusion  Our study provides a comprehensive overview of the cellular heterogeneity and underlying mechanisms 
in septic patients with various bacterial infections, providing insights to inform development of stratified targeted 
therapies for sepsis.
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Introduction
Sepsis is a life-threatening organ dysfunction primarily 
caused by dysregulated host immune responses against 
infection [1, 2]. Notably, bacteria are the primary infec-
tion source during sepsis [3]. Clinically, symptoms and 
phenotypes differ among septic patients with differ-
ent types of bacteria [4]. However, knowledge of septic 
patients with different bacterial infections remains lim-
ited, impeding precise treatment.

Significant transcriptional differences have been 
reported in sepsis caused by different bacterial infec-
tions [5, 6]. Genes highly expressed in sepsis caused by 
Burkholderia pseudomallei are related to inflammatory 
responses, apoptosis, and cellular metabolic processes 
[5]. Escherichia coli-induced sepsis is associated with 
fructose and mannose metabolism [6]. However, there 
has been limited systematic investigation into the tran-
scriptional differences among distinct types of bacteria-
induced sepsis. Critically, bulk transcriptomic analysis is 
insufficient to fully elucidate the cellular heterogeneity of 
sepsis with different bacterial infections.

The emergence of single-cell transcriptomics provides 
an opportunity to study sepsis at the cellular level [7]. 
Recently, single-cell studies on sepsis have discovered 
disease-associated cytologic signatures of bacterial sepsis 
[8] and tracked temporal expression changes in specific 
cell types in patients surviving from or with fatal sepsis 
[9]. However, studies that rely solely on single-cell RNA 
(scRNA) sequencing data to investigate the characteris-
tics of septic patients with different infections have been 
limited by small sample size. Therefore, integrating bulk 
and scRNA data to study different types of bacterial 
sepsis at the cellular level has potential to be a fruitful 
approach [10]. Using large-scale bulk RNA-seq data to 
identify global signature genes and then investigating cel-
lular heterogeneity using scRNA data, will provide a new 
perspective and comprehensive understanding of dif-
ferent types of bacterial sepsis. Moreover, integration of 
these two types of transcriptomic data allows for mutual 
validation, increasing the accuracy of results.

In addition to immune cell heterogeneity, the spatial 
localization of immune cells is another key factor deter-
mining differences in response to bacterial infections, 
as cell functions are influenced by neighboring cells and 
signals in the tissue microenvironment [11]. In the fields 
of tumor and developmental biology, spatial transcrip-
tomics (ST) has been widely used to understand cel-
lular interactions in microenvironments and decipher 
location-associated mechanisms of tissue formation and 
organogenesis [12, 13]. Recent research based on kidney 
tissue scRNA and ST data from a mouse model of sepsis 
revealed that dysregulated cell–cell communication is a 
major contributor to sepsis [14]. Additionally, subcellular 

spatial sequencing can provide information on the loca-
tions of gene expression within a cell [15], which can 
improve understanding of the molecular mechanisms 
underlying different bacterial sepsis subtypes.

In this study, we integrated multi-omics data, including 
bulk RNA, scRNA, spatial and subcellular ST, metabo-
lomics, and cheminformatics datasets, to identify specific 
signature gene sets, cell clusters, molecular mechanisms, 
and underlying targeted drugs in septic patients with 
different bacterial infections. Our findings provide an 
overall perspective on the heterogeneity of sepsis with 
different bacterial infections and will inform the devel-
opment of personalized treatment and management 
strategies.

Materials and methods
Datasets
Three sepsis blood transcription profile datasets 
(GSE69528, GSE13015, and GSE4607) annotated with 
detailed pathogen information were retrieved from Gene 
Expression Omnibus (GEO) at the National Center for 
Biotechnology Information. Signature genes of patients 
with different types of sepsis were identified based on 
these datasets. Gene expression profiles from whole 
blood cells infected by bacteria ex vivo (GSE65088) were 
used to identify the basic features of E. coli infection. 
The role of BCL6 in cell differentiation was investigated 
using gene expression data from myeloid cells from wild 
type (WT) and BCL6-knockout (KO) mice (GSE24813). 
Three scRNA-seq datasets (GSE151263, GSE167363, and 
SCP548) from published studies of septic patients were 
downloaded, integrated, and the integrated dataset used 
to identify specific cells related to septic patients and dif-
ferent bacterial infections. ST data from healthy human 
(GSE171406) and mouse sepsis model (GSE154107) kid-
ney tissue sections were used to investigate the functions 
and signaling pathways of relevant cell subpopulations 
within kidney. ST data from mice were integrated with 
scRNA data (GSE151658) generated by the same study. 
Furthermore, the nCounter Elements TagSets sequenc-
ing-based dataset (GSE167914) was used to examine 
changes in enzymes related to mitochondrial respiration 
and function in the peripheral blood of septic patients 
and healthy controls. Metabolomics data from septic 
patients (MTBLS563) were also used to validate meta-
bolic changes identified in these patients. Subcellular co-
localization analysis was conducted based on a sequential 
fluorescence in  situ hybridization-plus (seqFISH-plus) 
dataset (https://​github.​com/​CaiGr​oup/​seqFI​SH-​PLUS), 
to reveal the functional relationships between co-
expressed genes. The regulatory role of ELF1 in DRAM1 
expression was verified using chromatin immuno-
precipitation followed by sequencing (ChIP-seq) data 

https://github.com/CaiGroup/seqFISH-PLUS


Page 3 of 22Sun et al. Journal of Translational Medicine          (2023) 21:777 	

(GSE122203). Details of all datasets used in this study are 
summarized in Table 1.

Human samples
The study was approved by the research ethics board of 
Shanghai East Hospital (ChiCTR2000035722). Informed 
consent was obtained from all participants in this study. 
Subjects with sepsis were diagnosed using the sep-
sis 3.0 criteria [23]. Peripheral blood mononuclear cells 
(PBMCs) were collected for gene expression analysis. 
Patients exhibiting life-threatening organ dysfunction, 
indicated by an increase of at least two points in the 
Sequential Organ Failure Assessment (SOFA) score fol-
lowing infection, were included. Patients with conditions 
including HIV infection, autoimmune diseases, hemato-
logical malignancies, and viral hepatitis were excluded. 
The case group and the control group were matched for 
age and sex. Information on the case–control subjects 
enrolled in this study is provided in Table 2.

Quantitative real‑time PCR
Total RNA was isolated from PBMCs using the RNA-
fast200 kit (Fastagen, China, #220011), according to the 
manufacturer’s instructions. cDNA was synthesized from 
total RNA using Evo M-MLV RT Premix for qPCR (ACC​
URA​TE BIOLOGY, China, #AG11706), according to the 
manufacturer’s instructions. Quantitative real-time PCR 
(qRT-PCR) was conducted using SYBR Green Premix 
Pro Taq HS qPCR Kits (ACC​URA​TE BIOLOGY, China, 
#AG11701). To ensure the accuracy of qRT-PCR results, 

all RNA samples were extracted under consistent condi-
tions, and equal amounts of RNA were used for reverse 
transcription to cDNA. Cycle threshold (CT) values of 
target genes were determined, and relative expression 
calculated using the 2−ΔCT method. Data were normal-
ized using the reference gene encoding β-actin, to correct 
for potential sample-to-sample variation. Primers used 
for qRT-PCR are listed in Table 3.

Identification of signature gene sets for different types 
of sepsis
Signature gene sets for different types of sepsis were 
identified using the following criteria. First, differen-
tially expressed genes (DEGs) between septic patients 
with different bacterial infections and healthy con-
trol samples in each dataset were identified using the 
limma package [24], with P correction using the Benja-
mini–Hochberg method. To ensure the reliability of the 
results, only sepsis types with more than three samples 
in each dataset were compared. For each type of sepsis, 
differential results of multiple datasets were corrected 
using the robust rank aggregation (RRA) method for 
those included in more than one dataset, to obtain a 
comprehensive ranking [25]. Finally selected genes that 
were significantly differentially expressed (|Log2 FC|> 1 
and adjusted P < 0.05) in each dataset, as well as signifi-
cant after RRA correction, were identified as potential 
key genes for each type of sepsis (P < 0.05). If only one 
dataset contained patients with this type of sepsis, the 
threshold was increased (|Log2 FC|> 2 and adjusted 

Table 1  Details of the datasets used in this study

NMR Nuclear magnetic resonance

Dataset Type Platform Septic patients/Case Control References

GSE69528 Bulk RNA GPL10558 83 55 Pankla R et al. [5]

GSE13015 Bulk RNA GPL6947 29 10

GPL6106 48 19

GSE4607 Bulk RNA GPL570 108 15 Wong HR et al. [16]

GSE65088 Bulk RNA GPL10558 36 21 Dix A et al. [17]

GSE24813 Bulk RNA GPL1261 4 6 Hurtz C et al. [18]

GSE151263 scRNA GPL20301 7 0 Jiang Y et al. [19]

GSE167363 scRNA GPL24676 10 2 Qiu X et al. [9]

SCP548 scRNA GPL29783 36 29 Reyes M et al. [8]

GSE171406 ST GPL24676 2 2 Melo Ferreira R et al. [20]

GSE154107 ST GPL24247 1 0 Janosevic D et al. [14]

GSE151658 scRNA GPL24247 6 1 Janosevic D et al. [14]

GSE167914 RNA GPL29783 28 11 Herwanto V et al

MTBLS563 NMR-based metabolic 
profiling

/ 55 58 Grauslys A et al. [21]

seqFISH-PLUS seqFISH-plus / / / Eng. et al. 2019. [22]

GSE122203 ChIP-seq GPL16791 2 2 Seifert LL et al
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P < 0.05), to improve the reliability of the result. Of 
selected potential key genes, those that were upregu-
lated were considered signature genes. Signature genes 
were also validated using independent datasets and 
receiver operating characteristic curves plotted.

Functional enrichment analysis
Gene Ontology (GO) and pathway enrichment analyses 
were performed using Metascape (https://​metas​cape.​org) 
and Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) (https://​david.​ncifc​rf.​gov/).

Deconvolution analysis
Deconvolution analysis can be used to evaluate the pro-
portions of different cell types in bulk data. Computa-
tional Methods for Immune Cell-Type Subsets (ComICS) 
(https://​github.​com/​cran/​ComICS), a computational 
method for cell-type subset analysis, was used for decon-
volution analysis of septic patients. For deconvolution 
analysis of BCL6-KO data. CIBERSORTx was applied to 
generate a group feature matrix based on integrated sin-
gle-cell data [26], and then estimated changes in the pro-
portions of cell groups between WT and BCL6-KO data 
using this matrix.

Single cell RNA‑seq data analysis
Seurat was used to integrate the three scRNA datasets 
and Harmony was applied to correct for batch effects. 
Seurat is a widely used R package for scRNA-seq analy-
sis [27] and Harmony is an excellent tool for integrating 
single cell data by mapping cells into a shared embedding 
[28]. Dimensionality reduction and clustering were then 
performed based on Harmony-corrected data.

Differential expression analysis between clusters and 
identification of putative marker genes for each cluster 
were used to annotate clusters. Given known cell mark-
ers, clusters were annotated based on expression of these 
putative marker genes. To determine the percentage 
of each cell type, the number of cells belonging to each 
type within a group was counted and divided by the total 
number of cells assigned to the group.

Signature enrichment analysis was performed using the 
irGSEA package (https://​github.​com/​chuiq​in/​irGSEA/). 
To improve the robustness of the results, three methods 
(AUCell, UCell, and singcore) provided in irGSEA were 
used to calculate signature gene enrichment scores. After 
RRA correction, clusters in which scores were specifically 
upregulated in patients were selected as specific clusters 
related to different types.

The monocyte cell lineage trajectory was inferred using 
Monocle2, a semi-supervised analysis mode suitable for 
personalized analysis of cell clusters [29]. Pseudotem-
poral analysis was conducted to identify differentiation-
related genes.

SCENIC (Single-Cell Regulatory Network Inference 
and Clustering) is a computational method used to infer 
gene regulatory networks in scRNA-seq data [30]. In this 

Table 2  Demographic and clinical characteristics of septic 
patients and healthy controls

SOFA Sequential Organ Failure Assessment, CRP C-Reactive Protein, PCT 
Procalcitonin, WBC White Blood Cell count, PLT Platelet count

Characteristics Healthy control 
(n = 4)

Sepsis (n = 5)

Demographic characteristics

Female/male 2/2 3/2

Median age (years) (IQR) 72 (67–76) 75.6 (59–86)

Site of infection

Lung / 2/5

Abdominal / 1/5

Blood / /

Others / 2/5

SOFA score, median (IQR) 5.8 ± 1.4

Laboratory Tests /

CRP (mg/L), mean ± SEM / 152.83 ± 19.69

WBC (109/L), mean ± SEM / 1.22 ± 11.63

PCT (ng/mL), median (IQR) / 5.26 ± 10.06

PLT (109/L), mean ± SEM / 178.4 ± 35.83

Lactate (mg/L), mean ± SEM / 0.29 ± 1.48

Immunologic parameter /

Lymphocytes, × 109/L / 0.61 ± 0.09

Monocytes, × 109/L / 0.69 ± 0.13

Neutrophil, × 109/L / 10.28 ± 1.13

IgG, mg/dl / 1009.8 ± 82.40

IgM, mg/dl / 98.8 ± 9.93

Complications, N (%)

Acute respiratory failure / 2 (40)

Acute cardiac dysfunction / 3 (60)

Acute kidney injury / 3 (60)

Acute hepatic insufficiency / 1 (20)

28-day mortality, N (%) / 2 (40)

Hospital mortality, N (%) / 2 (40)

Table 3  Primers used for qPCR in this study

Gene Primer sequence (5ʹ → 3ʹ)

Human DRAM1 Forward ATT GGT GGG ATG TTT CGG AAT GG

Human DRAM1 Reverse TGA TGG ACT GTA GGA GCG TGT AC

Human LDHA Forward GTG TGC CTG TAT GGA GTG GA

Human LDHA Reverse GPC IAA CCA CCT GCT TGT GAA CCT​

Human ACTB Forward CAT GTA CGT TGC TAT CCA GGC​

Human ACTB Forward CTC CTT AAT GTC ACG CAC GAT​

https://metascape.org
https://david.ncifcrf.gov/
https://github.com/cran/ComICS
https://github.com/chuiqin/irGSEA/
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study, SCENIC was used to identify upstream transcrip-
tion factors that regulate signature genes in relevant cell 
subpopulations.

CellChat was employed to investigate cell–cell inter-
actions in both control and sepsis samples by detecting 
significant ligand-receptor pairs [31]. Communication 
between different cell types was identified by analyzing 
gene expression of ligands in one cell cluster and specific 
receptors in another. Cell communication scores were 
then calculated by taking the average expression levels of 
ligand-receptor genes.

ST data analysis
For analysis of the human kidney tissue ST dataset, the 
FindTransferAnchors and TransferData functions of Seu-
rat were applied to map the cell subtypes identified as 
associated with different sepsis types to the spatial data. 
Co-localization of cells in spatial positions was evalu-
ated by analyzing neighboring cells of relevant cells and 
assessing the receptor-ligand interactions of cells in the 
tissue using SpaGene [32].

For analysis of single-cell and ST data from mouse kid-
ney tissue, the two types of data were integrated using 
the Spatial Transcriptomics Deconvolution by Topic 
Modeling (STRIDE) method [33]. Using the integrated 
data, Multiview Intercellular SpaTial modeling frame-
work (MISTy) was employed to analyze cell interactions. 
MISTy is a multi-view framework (intrinsic, local niche 
view, and tissue view) for modeling intercellular interac-
tions from spatial data [34].

Based on seqFISH-plus data, Bento (https://​github.​
com/​ckmah/​bento-​tools) was used for subcellular spatial 
analysis and visualization. The distance between genes 
was defined as the average shortest distance.

Metabolomics data analysis
Metabolic data from septic patients were downloaded 
from Metabolights (https://​www.​ebi.​ac.​uk/​metab​oligh​
ts/) and analyzed using the online tool, MetaboAnalyst 
(5.0) [35]. Data were filtered and normalized, followed by 
one-factor statistical analysis. Additionally, fold-change 
and P values of metabolites between healthy controls and 
patients were calculated to identify significantly different 
metabolites.

ChIP‑seq data analysis
An ELF1 ChIP-seq dataset was downloaded from GEO 
and ChIP-seq reads aligned to the hg19 genome assembly 
using bowtie2. The SAM file generated by bowtie2 was 
then converted to a BAM file using samtools. BAM files 
were subsequently transformed into BED files using bed-
tools. Peaks were identified using MACS, which oper-
ates based on the Poisson distribution, with a stringent 

q-value cut-off (0.0001). Results were visualized using 
Integrative Genomics Viewer (IGV) [36].

Virtual screening and de novo design
Structural data of compounds and proteins were down-
loaded from ZINC20 [37] and UniProt, respectively. 
Batch docking was performed to identify compounds 
that may bind to the proteins using Vina [38]. Molecular 
optimization and de novo design were conducted using 
the online PanGu Drug database [39].

Statistical methods
Test methods used are described in the figure legends. 
P < 0.05 was considered statistically significant (*P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001). Raw and adjusted 
P values are provided in the figures and tables. Analy-
ses were mainly implemented in R language, based on 
version 4.0.2 (patched) (mainly for bulk RNA analyses) 
and 4.2.2 (mainly for single-cell analyses). In addition, 
seqFISH-plus and ST data were analyzed using Python 
language (version 3.9.12).

Results
Dysregulated genes in septic patients with different 
bacterial infections differ in functions
In our study, we combined multiple types of omics 
data to investigate the cell-level heterogeneity in septic 
patients with 12 different bacterial infections (Fig. 1). To 
investigate the dysfunctional features of septic patients 
with different bacterial infections, we integrated three 
bulk transcriptome datasets (GSE69528, GSE13015, 
and GSE4607) to identify DEGs, and then performed 
functional enrichment analysis. These datasets pro-
vided detailed information about the infectious patho-
gens identified in patients. As for septic patients with E. 
coli infection (hereinafter referred to as E. coli sepsis), 
we identified 214 DEGs (FDR < 0.05 with |Log2FC|> 1) 
shared among three cohorts (Fig. 2A, B). To obtain more 
reliable key genes, we further screened these DEGs using 
the RRA package (P < 0.05, Freq = 3). Finally, 143 key 
genes underlying E. coli sepsis were identified, including 
94 upregulated and 49 downregulated genes (Fig. 2C).

Next, we performed functional annotation of DEGs 
using the Metascape database, and found that the 
upregulated genes were mainly enriched in “Neutro-
phil degranulation” and “Inflammatory response”, while 
downregulated genes were mainly enriched in “Lym-
phocyte activation” and “Regulation of natural killer 
cell mediated immunity” (Fig.  2D). Cell type enrich-
ment analysis further revealed that genes with high 
expression displayed myeloid cell features (includ-
ing CD177, LTF, and ITGAM), while genes with low 
expression exhibited lymphoid cell features (including 

https://github.com/ckmah/bento-tools
https://github.com/ckmah/bento-tools
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
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CD3E, CD8A, and CD8B) (Fig.  2E, Additional file  2: 
Figure S1A), which may reflect the depletion of lym-
phocytes in septic patients [40].

Intriguingly, marked differences in gene expres-
sion were detected between ex  vivo whole blood 
infected by E. coli and blood from patients with E. 
coli sepsis. Notably, genes enriched in T cell activa-
tion were significantly upregulated in E. coli infection 
(Log(Q) = −20.663), but significantly downregulated in 
E. coli sepsis (Log(Q) = 13.992), indicating that T cells 
may play distinct roles in E. coli infection and E. coli 
sepsis. Additionally, we identified some genes shared 
between these two conditions, including DRAM1, 
PFKFB3, and CASP5, which are related to autophagy 
[41], glycolysis [42], and pyroptosis [43], respectively, 
suggesting that alterations in metabolic and immune 
response pathways in immune cells may be a funda-
mental feature of E. coli infection (Fig. 2F).

Regarding septic patients caused by other pathogens, 
analysis of publicly available data (Table 4) identified 12 
potential key gene sets in septic patients caused by 12 
different pathogen infections (Additional file  2: Figure 
S1B, C). Functional annotation of these genes showed 
some common terms in all types of sepsis (Additional 
file 2: Figure S1D, Additional file 1: Table S1), including 
“Neutrophil degranulation,” “Innate immune response,” 
and “Response to bacterium” (Fig.  2G). In addition, 
some terms were specific to certain types of sepsis. 
For example, “Negative regulation of B cell activation” 
was specific to E. coli sepsis, “Insulin signaling” was 
exclusively high in B. pseudomallei sepsis, and “Bind-
ing and uptake of ligands by scavenger receptors” was 
unique to Salmonella sepsis (Fig. 2G). Overall, we iden-
tified potential key genes and functional terms for each 
pathogen, indicating that septic patients with different 

Fig. 1  The experimental strategy is illustrated in a schematic map
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bacterial infections both share common dysfunctional 
patterns and exhibit unique alterations.

Identification of signature genes of sepsis with different 
bacterial infections
We next sought to identify gene markers that can dis-
tinguish septic patients with different bacterial infec-
tions. By analyzing DEGs, we identified 19 genes that 

were exclusively upregulated in E. coli sepsis (Fig.  3A). 
These genes, which were mainly associated with comple-
ment activation, protein transport, purine metabolism, 
and epigenetic modification (Fig.  3B), are associated 
with clinical outcomes and disease progression in septic 
patients [44–46]. Of particular note, DRAM1, a signature 
DEG in E. coli infection (Fig. 2F), was identified as unique 
to E. coli sepsis (Fig. 3B), further emphasizing the critical 

Fig. 2  Dysregulated features of E. coli sepsis. A Volcano plots depict the DEGs between E. coli sepsis and controls in each bulk dataset. B The venn 
diagram illustrates the relationship of DEGs from various datasets. C The circle heatmap displays the expression of 143 underlying key genes of E. 
coli sepsis in each dataset. D and E Bar graph of enriched terms in biological function D and cell type signatures E across the 143 genes, colored 
by Q values. F The venn diagram (left) depicts the relationship of DEGs from ex vivo whole blood infection with E. coli and E. coli sepsis, a bar graph 
(right) shows the enriched terms across 212 genes, colored by Q values. G The heatmap shows the common and specific function terms across all 
types
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role of DRAM1 in E. coli-induced immune cell dysregu-
lation. Moreover, we identified several DEGs in com-
mon among septic patients, including VNN1, ANKRD22, 
TDRD9, S100A12, and MMP9 (Fig.  3A), which are pri-
marily associated with neutrophil degranulation, suggest-
ing a ubiquitous role for this process in septic patients.

We further evaluated the potential diagnostic role of 
the unique DEGs using an additional dataset (GSE13015_
GPL6106), and found that expression of the 19 signature 
genes was higher in patients with E. coli sepsis than in 
healthy controls and septic patients caused by other bac-
teria (Psepsis vs controls = 2.259e-04, PE. coli vs Others = 0.04867) 
(Fig.  3C). We also validated that the expression of 
DRAM1 was higher in septic patients than in controls in 
our enrolled cohort (P = 0.0318) (Fig. 3D). Furthermore, 
the 19-gene signature showed good ability to predict 
case–control status (AUC​mean = 0.96) (Fig.  3E). Further, 
the model showed a strong ability to distinguish E. coli 
infection from other bacterial infections (AUC​mean = 0.89) 
(Fig. 3E). These results highlight the effectiveness of our 
signature gene set for identifying and characterizing dif-
ferent types of sepsis.

We also analyzed other types of sepsis in the same way, 
and found that the signature gene set for B. pseudomal-
lei was highly expressed in B. pseudomallei sepsis (Addi-
tional file 2: Figure S2A). Furthermore, the signature set 
had good predictive value for both case–control status 
(AUC​mean = 0.91) (Additional file 2: Figure S2B) and dis-
tinction between B. pseudomallei sepsis and other types 
of sepsis (AUC​mean = 0.90) (Additional file 2: Figure S2C). 
In addition, signature gene sets for other types of sepsis 

also showed high expression levels in their respective 
patient cohorts and demonstrated impressive classifica-
tion performance (Additional file 2: Figure S2A, B). These 
results highlight the efficacy of our signature gene sets 
(Additional file 2: Table S2) for identifying and character-
izing different types of sepsis.

Finally, we analyzed the relationships among differ-
ent types of sepsis. Based on the Jaccard similarity coef-
ficient, we found that S. viridans sepsis was similar to 
Group B Streptococcus (Group B Strep) sepsis, while the 
E. coli sepsis and Group A Streptococcus (Group A Strep) 
sepsis clustered together (Fig.  3G). Moreover, through 
deconvolution analysis, we observed several differ-
ences in cell clusters between E. coli sepsis and those of 
other type of sepsis, including C0.monocell (P = 0.043), 
C2.monocell (P = 0.009), and C7.monocell (P = 0.006) 
(Fig. 3F), suggesting that different types of sepsis may be 
associated with different cell clusters and emphasizing 
the need for further single-cell level analysis.

Septic patients with different bacterial infections are 
distinguished with immune cell subclusters
As septic patients with different bacterial infections 
exhibited cell type-specific dysregulation, we attempted 
to identify specific cell clusters related to different bac-
terial infections by integrating three published scRNA 
datasets (GSE151263, GSE167363, and SCP548). After 
quality control of the single-cell transcriptome data 
(Additional file  2: Figure S3A), we obtained a large 
scRNA dataset comprising 152,636 cells from 69 samples 
(21 controls and 48 septic patients).

We then performed unsupervised clustering of the 
single-cell transcriptome data and identified 18 clusters, 
followed by two-dimensional uniform manifold approxi-
mation and projection (Fig.  4A, B). To investigate the 
specific clusters associated with patients with different 
types of sepsis, we calculated signature gene set scores 
for each cell using “irGSEA.” We found that the signature 
genes for E. coli sepsis were mainly enriched in mono-
cytes (Fig.  4C, D). Further, the signature gene set for E. 
coli sepsis was significantly upregulated in patient C1_
Mono and C10_Mono cell clusters (Fig.  4E), indicating 
that E. coli sepsis may be associated with dysfunction of 
these clusters. Subsequently, we renamed these mono-
cyte cell clusters based on their distinctive marker genes 
(Fig. 4F). Notably, the C1_CD36 and C10_ULK1 clusters 
associated with E. coli sepsis were significantly over-rep-
resented in septic patients (Fig. 4G).

Regarding other types of sepsis, we found that the sig-
nature genes for Group B strep, Neisseria, and S. viridans 
sepsis were also mainly enriched in monocytes (Addi-
tional file  2: Figure S3B). However, unlike E. coli sepsis, 
signature genes for S. viridans sepsis were predominantly 

Table 4  The number of DEGs in septic patients with different 
bacterial infections

Acinetobacter baumannii (A. baumannii), Corynebacterium species 
(Corynebacterium spp.), Group A Streptococcus (Group A strep), Group B 
Streptococcus (Group B strep), Klebsiella pneumoniae (K. pneumoniae), Micrococcus 
species (Micrococcus spp.), Staphylococcus aureus (S. aureus), Streptococcus 
viridans (S. viridans)

Pathogens Up Down Origin datasets

A. baumannii 55 12 GSE69528

B. pseudomallei 100 120 GSE69528, GSE13015

Corynebacterium spp. 17 26 GSE69528

E. coli 94 49 GSE69528, GSE13015, GSE4607

Group A strep 78 39 GSE4607, GSE69528

Group B strep 76 42 GSE4607

K. pneumoniae 43 22 GSE69528

Micrococcus spp. 55 10 GSE69528

Neissera 72 29 GSE4607

Salmonella 85 22 GSE69528

S. aureus 37 28 GSE4607, GSE69528

S. viridans 58 13 GSE4607
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enriched in the C4_RPL34 cluster, while those for Group 
B strep sepsis were enriched in C13_UBE2Z cells. In addi-
tion, the signature gene set for Micrococcus spp. sepsis 
was enriched in platelets (Additional file 2: Figure S3B). 
Taken together, our data reveal the dysregulated cell clus-
ters associated with different types of sepsis.

Signature genes are related to the pathologic roles 
of characteristic cell clusters
Monocytes are major contributors to sepsis pathogenesis 
[8, 47], and our study also found intimate associations 
between bacterial sepsis and monocytes. We next per-
formed pseudotime analysis of six monocyte cell clusters 
using monocle2, to investigate the cell type-specific char-
acteristics of monocytes associated with sepsis. We found 
that the C1_CD36 and C4_RPL34 clusters, located at the 
start of the trajectory, transitioned through C9_STOM 
and C13_UBE2Z to two terminal clusters, C2_C1QA, 

and C10_ULK1 (Fig.  5A). We defined the trajectory to 
C10_ULK1 as “Fate1,” and the trajectory to C2_C1QA as 
“Fate2” (Fig. 5B). Moreover, relative to controls, the early-
stage monocyte cluster, C4_RPL34, was significantly 
reduced in sepsis, while the intermediate and late-stage 
monocyte clusters, C2_C1QA, C9_STOM, and C10_
ULK1, were significantly expanded in sepsis (Fig.  5C, 
Additional file 2: Figure S4A). Next, we investigated the 
associated genes and pathways underlying the two dif-
ferentiation trajectories (Fig.  5D). We identified that 
genes expressed in Fate1 were involved in “IL-17 Signal-
ing Pathway,” “CXC Chemokine,” “Mitophagy—Animal,” 
“Positive Regulation of Angiogenesis,” and “Heparin 
Binding,” while those in Fate2 were associated with “Com-
plement Activation” and “ISG15-Protein Conjugation” 
(Fig.  5E). We obtained similar results when comparing 
C2_C1QA and C10_ULK1 (Additional file 2: Figure S4B, 
C). Notably, in consistent with the observation shown in 

Fig. 3  The signature genes of E. coli sepsis. A Upset plots show the unique and shared DEGs among different types of sepsis. B The signature genes 
of E. coli sepsis are identified. C The boxplot shows the average expression of signature genes and DRAM1. The P values are from a Wilcoxon test. D 
qRT-PCR analysis of DRAM1 expression in a cohort enrolled in this study (controls, n = 4; septic patients, n = 5). P value is determined by unpaired 
Welch’s t-test. E Receiver operating curve for out-of-sample prediction of case–control state (up) and differentiation between E. coli sepsis and other 
types of sepsis (down) is trained on signature genes. F The Sankey plot (left) shows the cell abundance of each cluster (n = 40) across the 3 groups 
(controls, E. coli sepsis, and others). The heatmap (right) shows the correlation between signature genes and clusters. G The heatmap displays 
the similarity between different types of sepsis, with size and color indicating the similarity coefficient
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Additional file 2: Figure S3B, the genes highly expressed 
in C10_ULK1 were enriched in “Pathogenic Escherichia 
coli infection,” while those in C2_C1QA were enriched 
in “Salmonella infection” (Additional file 2: Figure S4C). 

These findings indicate that monocytes with different 
fates have unique functions and that specific clusters play 
crucial roles in specific types of sepsis.

Fig. 4  The related cell clusters of E. coli sepsis. A The UMAP plot shows the clustering of 152,636 cells from 69 samples into 18 clusters. B Cell 
clusters are defined by a set of known marker genes. C The density scatter plot shows the expression levels of the E. coli sepsis signature. The color 
gradient represents the enrichment score, yellow indicates a higher score. D The density heatmap shows the expression and distribution of the E. 
coli sepsis signature in different cell subclusters. The color gradient represents the enrichment score, red indicates a higher score. E The heatmap 
shows the statistical significance of the E. coli sepsis signature in each cell subcluster as determined by the RRA method. The top bar graph shows 
the different cell subclusters, and the bottom bar graph shows the upregulation or downregulation of the signature gene set in each subcluster. F 
The marker genes of each monocyte cluster. G The bar chart shows the relative cell abundance of C1_CD36 and C10_ULK1 in controls and septic 
patients. P values are from a Wilcoxon test
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Intriguingly, branching analysis indicated that BCL6, 
an E. coli sepsis signature gene, was associated with fate 
decision (Padj = 2.3e-24). To further investigate the role 
of BCL6 in E. coli sepsis, we performed a deconvolution 
analysis of a public dataset (GSE24813) from WT and 
Bcl6-KO mice. Our results showed that the C2_C1QA 
cell cluster was over-represented, while C10_ULK1 was 
under-represented in Bcl6-KO mice (Fig.  5F), suggest-
ing that Bcl6 may be important in monocyte differentia-
tion. In addition, we found that DRAM1 was significantly 
upregulated in C10_ULK1 from patients with E. coli sep-
sis (Fig. 5G). As DRAM1 is a key regulator of autophagy 
[48], we investigated whether autophagy pathways were 

altered by gene set enrichment analysis, based on GO 
analysis, and found that functional terms related to 
autophagy were significantly upregulated in patient C10_
ULK1 cluster cells (Fig. 5H). We also observed a signifi-
cant upregulation of autophagy in patients with E. coli 
sepsis (GSE4607) (Fig. 5I). Therefore, we believed that the 
relationship between DRAM1 and E. coli sepsis is related 
to the upregulation of autophagy in C10_ULK1.

Regarding other sepsis types, we found that Neisseria 
sepsis was significantly associated with C2_C1QA clus-
ter cells. Additionally, C1QA, a Neisseria sepsis signature 
gene, was significantly upregulated in C2_C1QA cluster 
cells from septic patients (Additional file 2: Figure S4D). 

Fig. 5  Function of signature genes of E. coli sepsis in related cell clusters. A-C Pseudotime analysis of monocyte cell clusters. Trajectory of monocyte 
cell clusters is inferred using monocle2 and clusters are marked by colors A Pseudotime-ordered variables are inferred B Cells derived from case 
or control are displayed separately on the differentiation trajectory C Lines and arrows indicate inferred differentiation trajectory and direction. D 
Heatmap showing the expression of genes related cell fate decision. E Functional enrichment of genes related to two differentiation trajectories. F 
The bar chart shows the relative cell abundance of C2_C1QA (left) and C10_ULK1 (right) in WT and KO mice. G Expression of DRAM1 in C10_ULK1 
between sepsis and controls. The P value is from a Wilcoxon test. H and I GSEA of autophagy-related genes in C10_ULK1 H and GSE4607 dataset I, 
comparing controls and septic patients. Nominal P value and the false-discovery rate (FDR) are indicated. J Schematic diagram of monocyte cluster 
differentiation
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Furthermore, S. viridans sepsis was significantly associ-
ated with C4_RPL34, and CTSD may have an important 
role in this association (Additional file  2: Figure S4E). 
Group B Strep sepsis was significantly associated with 
multiple cell clusters, including C8_DC, C9_STOM, C10_
ULK1, C12_mix, C13_UBE2Z, and C16_B, and its signa-
ture genes, including CKAP4, CPEB4, TSPO, and TXN, 
were significantly upregulated in multiple relevant clus-
ters (Additional file 2: Figure S4F). In addition, although 
some types of sepsis did not show significant enrichment 
in relevant clusters after strict RRA correction, we found 
that they were associated with certain cell clusters and 
that their signature genes differed significantly in these 
clusters (Additional file 2: Figure S3B). For example, Sal-
monella sepsis was associated with the C2_C1QA clus-
ter, and the differential signature genes were MARCO 
and LILRB4 (Additional file 2: Figure S4G). Micrococcus 
spp. sepsis was associated with the C11_Plate cluster, and 
ESAM, HBG2, MMRN1, PF4V1, SAMD14, SELP, and 
TGFB1I1 may be important in this context (Additional 
file 2: Figure S4H).

Taken together, these findings suggested that signature 
gene sets are important for the differentiation and dys-
function of related cell clusters. In particular, DRAM1 
and BCL6 were implicated in autophagy and differen-
tiation of C10_ULK1 cluster cells, respectively (Fig.  5J). 
Therefore, in sepsis caused by particular types of bacte-
rial infections, targeting these specific genes could poten-
tially serve as a stratified therapeutic strategy to enhance 
patient outcomes.

DRAM1 promotes autophagy and glycolysis 
in an inflammatory monocyte subset in E. coli sepsis
To reveal the potential mechanisms underlying cell func-
tion regulation by subset-related signature genes, we 
performed co-expression analysis in related cell clus-
ters using GEN3. Genes co-expressed with DRAM1 
were enriched for “Autophagy,” “Glycolytic process,” 
“Antimicrobial responses,” “Ubiquitin,” and “Actin bind-
ing” functions (Fig.  6A). Further, we observed signifi-
cant upregulation of glycoprotein metabolic process in 
C10_ULK1 cells (Fig.  6B). Interestingly, we found that 
GAPDH, which encodes a key enzyme in the glycolytic 
reaction, glyceraldehyde-3-phosphate dehydrogenase, 
was involved in autophagy regulation, which may also be 
related to DRAM1 (Fig.  6A). To further investigate the 
relationships between DRAM1 and GAPDH, as well as 
DRAM1 and glycolysis, we conducted correlation analy-
sis of a bulk RNA dataset from septic patients (GSE4607), 
which showed that DRAM1 was significantly corre-
lated with GAPDH (P = 1.76e-11, r = 0.65) and glycolysis 
(P = 3.83e-16, r = 0.76) (Fig.  6C). In addition, nCounter 
analysis of a gene expression dataset (GSE167914) related 

to cell metabolism identified LDHA, which encodes a key 
enzyme in the final step of glycolysis, as a DRAM1-coex-
pressed glycolytic gene (Fig.  6A) that was significantly 
upregulated in patients with E. coli sepsis (Fig. 6D). Con-
sistently, LDHA expression was higher in septic patients 
than in controls in the enrolled cohort (P = 0.0169) 
(Additional file  2: Figure S5A). Metabolomics analysis 
also showed a significant increase in lactate levels in sep-
tic patients with bacterial infection (Fig. 6E) [21]. These 
results suggest that DRAM1 may play an important role 
in E. coli sepsis by regulating autophagy and glycolysis in 
C10_ULK1 cluster cells.

To further explore the relationship between DRAM1 
and its co-expressed genes, we performed subcellular 
gene co-localization analysis to determine whether they 
tended to be transcribed in close proximity. By calculat-
ing the distance between genes, we found that P4HB, 
a gene associated with autophagy, co-localized with 
DRAM1 (Fig.  6F). DRAM1 was also in close proximity 
to FAM49B (related to bacterial infection [49]), THBS1 
(related to autophagy [50]), TAGLN2 (related to phago-
cytosis [51]), and PDIA3 (related to autophagy [52]) 
(Additional file  2: Figure S5B), which displayed higher 
expression levels in and around the cell nucleus (Addi-
tional file 2: Figure S5C). This further strengthens regu-
latory function of DRAM1 in autophagy and bacterial 
infection.

Furthermore, we performed SCENIC analysis to iden-
tify upstream factors regulating DRAM1 expression and 
found that DRAM1 could be regulated by the transcrip-
tion factor, ELF1. By analyzing the ChIP-seq dataset 
(GSE122203), we validated that ELF1 significantly bound 
to the DRAM1 promoter region relative to an input 
control (Fig.  6H). Additionally, ELF1 was significantly 
upregulated in C10_ULK1 cells from patients (Fig.  6G), 
indicating its potential role in response to bacterial infec-
tion. Together, our findings suggest that DRAM1 induced 
by ELF1 could upregulate autophagy to resist bacterial 
infection and promote glycolysis (presumably through its 
association with GAPDH) for autophagic energy supply 
during E. coli infection (Fig. 6I).

Regarding other types of sepsis, co-expressed genes 
were mainly enriched for “Response to bacterium” and 
“Inflammatory response” (Additional file  2: Figure S5D-
I). We found that C1QA may enhance phagocytosis and 
regulate immune interactions in C2_C1QA cells to par-
ticipate in Neisseria sepsis [53] (Additional file 2: Figure 
S5D). Cell activation and cytokine production mediated 
by MARCO and LILRB4 in C2_C1QA cells may be cru-
cial in Salmonella sepsis (Additional file  2: Figure S5E, 
F). In C4_RPL34 cells in the context of S. viridans sep-
sis, genes co-expressed with CTSD were related to “Leu-
kocyte migration,” “Intrinsic apoptotic regulation,” and 
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“MYD88: MAL cascade initiation,” which may contribute 
to disease pathogenesis (Additional file  2: Figure S5G). 
Genes co-expressed with CKAP4 in C12_mix, involved 
in “PID pathway,” “Regulation of peptidase activity,” and 
“Vitamin D receptor pathway,” and might contribute to 
regulation of Group B Strep sepsis (Additional file 2: Fig-
ure S5H). Notably, the close relationship in expression 
among HBG2, MMRN1, SAMD14, SELP, and TGFB1I1 
in C11_Plate cells suggests that they may participate 
together in Micrococcus spp. sepsis (Additional file  2: 
Figure S5I). Overall, our findings shed light on potential 
mechanisms involving key signature genes in related cell 
subpopulations, which could provide a theoretical foun-
dation for clinical translation in the future.

Sepsis with different bacterial infections involves distinct 
cell communication networks in PBMCs
To investigate the contribution of related cells to sep-
sis, we analyzed cell–cell interactions in the integrated 
scRNA dataset. We found that C10_ULK1 cells had sig-
nificantly upregulated outgoing interaction strength 
(Fig.  7A) and mainly interacted with C2_C1QA, C10_
ULK1, C13_UBE2Z, and C17_DC cell clusters (Fig.  7B, 
C). Signal changes among cell clusters revealed that 
the “RESISTIN,” “ANNEXIN,” and “VISFATIN” path-
ways were upregulated in C10_ULK1 cells from sep-
tic patients (Fig.  7D). In particular, the “RETN-CAP1” 
signaling pathway was markedly induced in C10_ULK1 
cells, and involved in interactions with other cell 

Fig. 6  Function of DRAM1 in related cell clusters. A Functional annotation of DRAM1-related genes. B GSEA of glycolysis-related genes in C10_ULK1 
comparing controls and septic patients. C Two-dimensional plots show the correlation between DRAM1 and GAPDH, glycolysis-related genes 
(from “HALLMARK_GLYCOLYSIS”). D The bar chart shows the expression level of LDHA in controls and E. coli septic patients. E Volcano plots depict 
the differential metabolites between bacterial sepsis and controls. F The 2D image displays the RNA density (left) and the distributions of DRAM1 
and P4HB in cells (right). G The ridgeline plot shows the expression level of ELF1 in C10_ULK1 between controls and septic patients. H ELF1 ChIP-seq 
peaks at the promoter regions of DRAM1. I The schematic diagram shows the regulatory molecular mechanism of DRAM1 in C10_ULK1 in E. coli 
sepsis
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clusters (Fig. 7E). We also found that RETN was primar-
ily expressed in C10_ULK1 and C9_STOM cells, while 
CAP1 was expressed in numerous clusters (Fig.  7F). 
CAP1 is the canonical receptor for resistin, which can 
induce inflammation in humans [54]. Further, both MIF-
(CD74 + CXCR4) and MIF-(CD74 + CD44) were stimu-
lated during interactions between C10_ULK1 and C3_B, 
C13_UBE2Z, C14_Mix (Fig.  7E). MIF is a key molecule 
closely associated with bacterial infection and the sub-
sequent immune response [55]. Studies have shown that 
MIF participates in the occurrence and development of 
sepsis by recruiting inflammatory cells through receptor 
binding [56]. Our results suggest that MIF may exert its 

effects by binding to various receptors on different cell 
types in sepsis. In conclusion, our data indicate that C10_
ULK1 cells contribute to systemic inflammation in E. coli 
sepsis, mainly by secreting the RETN and MIF cytokines.

We also observed cell–cell interaction changes in sep-
sis in other clusters. Both ingoing and outgoing interac-
tion strengths of C2_C1QA cells were increased in sepsis 
(Fig.  7A), with MIF-(CD74-CD44) displaying the most 
significant increase (Additional file 2: Figure S6A, B). For 
C12_mix, we observed an increase in ingoing interac-
tion strength, mainly related to the chemokines, CXCR3 
and CXCR4 (Additional file 2: Figure S6C). In the disease 
state, the outgoing interaction strength of C9_STOM 

Fig. 7  The role of relevant cell clusters in sepsis PBMCs. A The strength of outgoing and incoming signals of cell clusters in controls (left) 
and septic patients (right). B Heatmap of differential interactions of clusters in the cell–cell communication network. The top bar indicates the sum 
of incoming signaling, and the right bar indicates the sum of outgoing signaling. C Differential interaction strength between C10_ULK1 (outgoing) 
and other cell clusters (incoming). D Heatmap showing the relative importance of outgoing signaling in each cell group in controls (left) and septic 
patients (right). E Comparison of significant ligand-receptor pairs between controls and septic patients. F The expressions of RETN (up) and CAP1 
(down) in different cell clusters. G All the signaling pathways of controls and sepsis samples are presented in relative information flow (left) 
and overall information flow (right). H Two-dimensional manifold projection of signaling pathways based on their functional similarity
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increased, with RETN-CAP1 a major upregulated sig-
nal (Additional file  2: Figure S6D). C11_Plate had sig-
nificantly upregulated outgoing interaction strength and 
mainly interacted with C3_B, C14_Mix, and C17_DC 
(Additional file  2: Figure S6E). The major upregulated 
ligand-receptor pair between C11_Plate and DC cells was 
PF4-CXCR3 (Additional file  2: Figure S6F). Platelet fac-
tor 4 (PF4) is a small cytokine that regulates inflamma-
tion by binding to the CXCR3 receptor [57]. Overall, our 
findings suggest that interactions among these clusters 
may contribute to the systemic inflammatory response 
observed in sepsis.

Next, we evaluated key signals and found that the 
ANNEXIN, RESISTIN, PARs, and VISFATIN pathways 
were upregulated in septic patients (Fig.  7G). Addition-
ally, based on functional similarity analysis, we found sig-
nificant functional differences in the signaling pathways 
differentially enriched under healthy and disease condi-
tions (Fig.  7H). We also identified cell communication 
patterns related to sepsis. Under normal conditions, the 
incoming signaling of C1_CD36, C4_RPL34, C9_STOM, 
and C10_ULK1 was characterized by “pattern 4” contain-
ing ANNEXIN and VISFATIN pathways. While under 
disease conditions, C2_C1QA incoming signaling was 
also characterized by the same pattern shared with the 
aforementioned four cell clusters (Additional file  2: Fig-
ure S6G). As for the outgoing signaling, nearly most cell 
clusters were dominated by the separated patterns in 
health controls, while these signals of cell clusters tended 
to be concentrated (Additional file  2: Figure S6H). For 
example, the outgoing signaling of C1_CD36, C3_B, C9_
STOM, and C10_ULK1 cells was dominated by “pattern 
1,” which included RESISTIN and VISFATIN in sepsis 
(Additional file 2: Figure S6H). These dynamic signaling 
patterns in health and disease indicate that disease-spe-
cific signaling activation is cell-type specific. In summary, 
our findings reveal interaction networks among different 
cell clusters under disease conditions, and identify the 
main communication signaling pathways for each clus-
ter, providing a functional basis to better understand the 
roles of various immune cells in different types of sepsis.

Sepsis with different bacterial infections involves 
distinct cell communication networks in the tissue 
microenvironment
Acute kidney injury is a common complication of sepsis 
that can lead to multi-organ dysfunction through its dis-
tant effects [58]. Therefore, we also examined cell interac-
tions in kidney tissue by integrating scRNA and ST data. 
We analyzed an ST dataset from human kidney tissue 
(GSE171406) and identified 14 clusters (Fig.  8A). Next, 
we determined that C10_ULK1 was mainly enriched in 
cluster C13_human of ST, by mapping the PBMC clusters 

from the scRNA dataset onto the ST data (Fig.  8B, C). 
In kidney, podocytes (C6_human) were the most abun-
dant neighboring cells (Fig. 8D, E). In addition, we found 
that integrin was a significant signal involved in interac-
tion between C13_human and other cell clusters using 
SpaGene (Fig.  8F). Renal tubular obstruction in sepsis 
is primarily related to the shedding of proximal tubular 
epithelial cells, and is regulated by integrins [59]. There-
fore, we speculated that C10_ULK1 may be involved in 
the pathogenesis of sepsis by regulating integrin signaling 
in kidney tissue.

To test this hypothesis, we further analyzed time-
dependent scRNA and ST data from mouse sepsis model 
kidney tissues. First, we performed clustering analysis on 
the integrated mouse scRNA data and identified 26 cell 
clusters, of which C10_mouse displayed similar expres-
sion features to C10_ULK1 (Additional file  2: Figure 
S7A, B). To investigate spatial cell–cell interactions, we 
used the STRIDE method [33] to integrate scRNA and 
ST data (Fig. 8G, Additional file 2: Figure S7C). Based on 
the integrated data, we established models of intercellu-
lar interactions from different spatial perspectives (intra-
view, juxtaview, and paraview) using MISTy. By analyzing 
the contributions of each perspective to the prediction, 
we found that intraview generated a significant contribu-
tion (Additional file  2: Figure S7D). Next, we extracted 
interaction communities from intraview, and observed 
that C10_mouse cells closely interacted with the C19_
mouse and C13_mouse clusters (Fig.  8H). Meanwhile, 
expression of ITGB2 (encoding integrin beta) in C19_
mouse was significantly increased under LPS stimulation 
(Fig. 8I). Therefore, integrin would be important for cell-
to-cell interaction in kidney tissue in sepsis.

Furthermore, we found that the C2_C1QA cluster was 
mainly associated with C2_human cluster cells in human 
kidney tissue (Additional file  2: Figure S7E). Further 
analysis revealed that the C2_human cluster may func-
tion by secreting growth factors, such as VEGFA (Addi-
tional file  2: Figure S7F). High VEGFA expression in 
macrophages increases vascular permeability, leading to 
septic death. In contrast, inhibiting VEGF signaling can 
effectively reduce inflammation and protect mice with 
sepsis from death [60]. In conclusion, our study reveals 
that macrophages in kidney tissue may contribute to sep-
sis pathology by secreting growth factors and via integ-
rin-mediated signaling.

Virtual screening and de novo design reveal a potential 
strategy for stratified targeted therapy
Given the crucial role of signature genes in definition 
of sepsis types, we explored the possibility for stratified 
therapy by targeting these genes with specific drugs by 
screening 5903 FDA-approved drugs from the ZINC20 
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database. For E. coli sepsis, we chose DRAM1 for drug 
screening. After batching docking with Vina, to compute 
docking scores between DRAM1 and each drug, 10 drugs 
were obtained. Among them, retapamulin exhibited the 
strongest affinity for DRAM1 (Fig. 9A). Retapamulin is a 
topical antibiotic known to bind to S. aureus and E. coli 
ribosomes [61]. Further, we analyzed various drugs that 
can affect the pharmacological activity of retapamulin 
(Fig. 9B) [62], and found that its serum concentration can 
be increased by combination with abametapir, which is 
used to treat parasitic infections [63]. When used con-
comitantly with simeprevir [64] or boceprevir [65], (both 

treatments for chronic hepatitis C virus infection) reta-
pamulin metabolism can be reduced. Conversely, con-
comitant use with rifampicin (for treating mycobacterial 
infections [66]) could enhance retapamulin metabolism, 
indicating that rifampicin would reduce the treatment 
duration. These findings highlight the importance of 
considering potential drug interactions when using reta-
pamulin to treat E. coli sepsis in patients with complex 
clinical infections.

As retapamulin is a topical medication, we attempted 
to optimize its structure to assess its viability as an 
oral drug. After optimization, we identified two novel 

Fig. 8  The role of relevant cell clusters in sepsis kidney tissue. A and B ST data from a human kidney tissue sample was processed and displayed 
with tissue sections A and UMAP plot B. Different colors represent different clusters. C The UMAP plot displays spots that were predicted to be 
C10_ULK1 in the spatial data. D The image depicts C13_human and its adjacent spots. E The image summarizes the proportions of different clusters 
present in the neighboring cells of C13_human. F The identified ligand-receptor pairs between C13_human and other clusters. G Localization 
of C10_mouse in kidney tissue. H Network community plot represents the communities of cells clusters from intrinsic view. I Expression of ITGB2 
at different time points after LPS injection in C19_mouse
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molecules exhibiting superior properties (Fig. 9C), which 
demonstrated enhanced potential for oral administration 
and exhibited favorable pharmacokinetic characteristics, 
indicating that they could be promising candidates for 
treatment of E. coli sepsis. Furthermore, our molecular 
design, based on protein pocket analysis, revealed poten-
tial molecules for targeted drug development, providing 
direction for further exploration and validation (Fig. 9D). 
For other types of sepsis, we also identified potential tar-
geted drugs and small molecules, such as nystatiin-C1QA 
foe Neisseria sepsis and dalfopristin-CTSD for S. viridans 
sepsis (Additional file 2: Figure S8).

Overall, these drugs and molecules show great poten-
tial for use in tackling the challenges of stratified targeted 
therapy for sepsis with different bacterial pathogens, 

laying the groundwork for more effective and tailored 
therapeutic interventions.

Discussion
Sepsis is a potentially fatal organ dysfunction that 
threatens tens of millions of people around the world, 
posing a significant global health challenge [1]. Bacte-
rial infection-induced sepsis is the most common type, 
contributing to high morbidity and mortality rates [3]. 
Pathological mechanisms, functional impairments, 
clinical features, and treatment approaches generally 
differ among patients with distinct bacterial infec-
tions [4]. Therefore, comprehensive investigation of 
the heterogeneity among septic patients with differ-
ent bacterial infections is necessary. In this study, we 

Fig. 9  Identification of potential target drugs and molecules. A (Left) Protein–ligand docking complex of DRAM1 with Retapamulin. (Right) 
Zoomed-in views of the interaction contact region. B (Left) Bar graph showing the number of drugs interacting with Retapamulin. (Right) Multi-ring 
chart showing different interaction effects, interaction drug targets, and target-enriched pathways from inner to outer rings. C Optimized molecular 
structure of Retapamulin and the associated improved properties. D De novo molecular design based on DRAM1 
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identified signature genes and relevant cell populations 
in patients with different types of sepsis. Furthermore, 
we determined the regulatory mechanisms in sepsis-
related cells and explored the functions and signaling 
pathways in cell populations altered in the disease.

E. coli infection is a common cause of sepsis. However, 
comprehensive comparisons between E. coli-induced 
sepsis and sepsis with other bacterial infections are lack-
ing. Through analysis of transcriptome data from 12 dif-
ferent types of bacteria-induced sepsis, we identified 19 
signature genes unique to E. coli sepsis, most of which 
have established roles in sepsis and E. coli infection. For 
example, ACSL1, which is involved in shuttling fatty acids 
to mitochondria for β-oxidation and lipid synthesis path-
ways, is upregulated in human neonatal sepsis [44]. Fur-
ther, ACSL1 levels in macrophages increase in response 
to E. coli treatment [67]. However, the mechanism under-
lying the effects of ACSL1-mediated lipid metabolism 
in E. coli sepsis requires further investigation. Histone 
deacetylase 4 (HDAC4), which can be upregulated and 
activated by LPS [68], participates in septic myocardial 
injury by regulating HIF-1α acetylation [45]. Expression 
levels of the cell cycle-related gene, HIST1H1C, corre-
late directly with SOFA score and mortality rate [69] and 
HIST1H1C protein level is significantly upregulated fol-
lowing E. coli infection [70]. Although our study mainly 
focused on the role of DRAM1 in E. coli sepsis, other sig-
nature genes might also have important roles and their 
molecular mechanisms require further exploration.

DRAM1 was previously revealed to regulate autophagy 
against bacterial infection in macrophages [71]. Con-
sistently, our findings demonstrate that upregulation 
of DRAM1 was involved in regulating autophagy and 
glycolysis in C10_ULK1 cells in response to both E. coli 
infection and E. coli sepsis. We also discovered that 
DRAM1 is co-expressed with GAPDH, a gene encoding 
a key enzyme in the glycolytic pathway that regulates 
autophagy in response to bacterial infection [72]. Simi-
larly, fructose and mannose metabolism are significantly 
upregulated in E. coli sepsis, indicating a close relation-
ship between glycolysis and E. coli sepsis [6]. Our findings 
suggest a potential crosstalk between DRAM1-regulated 
glycolysis and GAPDH-regulated autophagy. We specu-
late that activation of DRAM1 may upregulate autophagy 
to counter bacterial infection, leading to expansion of 
C10_ULK1 cells in sepsis. Given the potential cross-
talk between DRAM1 and GAPDH, further explora-
tion of DRAM1 and GAPDH regulatory mechanisms in 
E. coli sepsis would be intriguing. Additionally, by high 
throughput drug screening, we identified retapamulin as 
a specific chemical targeting DRAM1. Retapamulin is an 
established antibiotic that selectively inhibits bacterial 
protein synthesis. Therefore, our new finding strengthens 

the prospect of clinical application of optimized retapa-
mulin for treatment of E. coli sepsis.

Recently, monocytes have been revealed to be heterog-
enous in sepsis. For example, a distinct CD14+ monocyte 
cluster is expanded in bacterial sepsis and can function 
as a marker for distinguishing case–control states [8]. 
Based on single-cell transcriptome sequencing of PBMCs 
from controls and septic patients, NEAT1+ CD163+, 
and CD16+ monocyte clusters were identified as highly 
correlated with clinical indicators of sepsis [73]. In our 
research, we found that the C10_ULK1 monocyte subset 
was strongly associated with E. coli sepsis. This mono-
cyte subcluster is at a late stage of cell differentiation, 
expresses high levels of autophagy- and inflammatory 
macrophage-related genes, and is significantly expanded 
in sepsis. Cell interaction analysis in PBMCs and kidney 
tissue revealed that C10_ULK1 can activate inflamma-
tory signaling in different cells via secreted factors and 
cell–cell contact, leading to a systemic inflammatory 
response and contributing to E. coli sepsis occurrence 
and development. The role and function of this monocyte 
cluster in other diseases warrants further investigation.

Our study also identified signature genes, related cell 
clusters, and their interactions for each type of sepsis, 
where the signature genes showed close relationships 
with sepsis. For example, MARCO, the signature gene 
for Salmonella sepsis is highly expressed in macrophages 
from septic patients [74], while SELP, a Micrococcus spp. 
sepsis signature gene, was upregulated in platelets with 
increased mean platelet volume, leading to increased 
expression of P-selectin in sepsis [75]. Regarding related 
cell clusters, we found that most types of sepsis were 
associated with monocytes; Neisseria and Salmonella 
sepsis were related to C2_C1QA cells, while S. viridans 
sepsis was associated with C4_RPL34 cells. Addition-
ally, we found that Micrococcus spp. sepsis was related to 
the C11_Plate cluster. Cell interaction analysis revealed 
changes in cell communication between different clus-
ters in sepsis. For example, MIF-(CD74 + CD44) played 
an important role in cell communication in C2_C1QA 
cells, while C11_Plate may promote inflammation by 
regulating dendritic cells through PF4-CXCR3. Overall, 
our findings provide a basis for understanding the cellu-
lar heterogeneity among patients with different types of 
sepsis, but the underlying mechanisms and connections 
require further exploration.

In recent years, various transcriptome sequencing 
technologies and multi-omics analyses have been widely 
applied and facilitated great progress in the fields of 
cancer and developmental biology [76, 77]. However, 
the limited data from single-cell transcriptome analysis 
means that it is particularly important to integrate multi-
omics data for systemic analysis in studies of sepsis. In 
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our study, we identified marker genes for various sepsis 
subtypes by analyzing an integrated bulk RNA dataset. 
In addition, by investigating the enrichment of marker 
genes at the single-cell level, we identified cell clusters 
associated with different types of sepsis. Moreover, by 
combining multi-omics data, we revealed the regulatory 
mechanisms of signature genes in functions of specific 
cell populations. Finally, by combining human and mouse 
ST data, we were able to analyze the functions of rele-
vant cell clusters in sepsis. Therefore, our study provides 
a more comprehensive and systematic understanding 
of the cellular heterogeneity in different types of sepsis, 
which has the potential to benefit patients. One limita-
tion of our study is the relatively limited experimental 
validation. For holistic understanding and clinical appli-
cation for septic patients, more comprehensive sequenc-
ing data and thorough studies will be imperative.

Conclusions
By integrating multi-omics data, we have uncovered the 
cellular level heterogeneity of sepsis with different bac-
terial infections. We demonstrate that different types of 
sepsis are characterized by specific signature genes, cell 
populations, molecular mechanisms, cell functions, and 
underlying target drugs, which has important implica-
tions for the early diagnosis and stratified treatment of 
sepsis.
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(bottom). C The density distribution plot illustrates the regions where 
DRAM1 and its adjacent five genes are distributed within the cells. D-H 
Network of enriched terms by co-expressed genes of signature genes in 
related clusters. I HBG2, MMRN1, SAMD14, SELP, and TGFB1I1 are involved 
in sepsis-related functions in C11_plate. Figure S6. Cell–cell communica-
tion among cell clusters in PBMCs. A-D and F Comparison of significant 
ligand-receptor pairs was conducted between C2_C1QA (outgoing) 
and other clusters (incoming) A, between other clusters (outgoing) and 
C2_C1QA (incoming) B, between other clusters (outgoing) and C12_mix 
(incoming) C, between C9_STOM (outgoing) and other clusters (incom-
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F, in both controls and septic patients. e Differential interaction strength 
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scatter pie plot shows the spatial locations of different cell types predicted 
by STRIDE. Colors represent different cell types. D The relative contribution 
of each view to the prediction of cell interactions. E The UMAP plot dis-
plays spots that are predicted to be C2_C1QA in the spatial data of human 
kidney tissue. F The identified ligand-receptor pairs between C2_human 
and other clusters. Figure S8. Identification of potential target drugs 
and molecules. (A, C, E, G, and I) (Left) Protein–ligand docking complex. 
(Right) Zoomed-in views of the interaction contact region. (B, D, F, H, and 
J) De novo molecular design based on C1QA (B), MARCO (D), LILRB4 (F), 
CTSD (H), or CKAP4 (J).
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