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Abstract 

Background  Accumulating evidence supports the significant role of human microbiome in development and thera-
peutic response of tumors. Circulating microbial DNA is non-invasive and could show a general view of the micro-
biome of host, making it a promising biomarker for cancers. However, whether circulating microbiome is associated 
with prognosis of non-small cell lung cancer (NSCLC) and its potential mechanisms on tumor immune microenviron-
ment still remains unknown.

Methods  The blood microbiome data and matching tumor RNA-seq data of TCGA NSCLC patients were obtained 
from Poore’s study and UCSC Xena. Univariate and multivariate Cox regression analysis were used to identify circulat-
ing microbiome signatures associated with overall survival (OS) and construct the circulating microbial abundance 
prognostic scoring (MAPS) model. Nomograms integrating clinical characteristics and circulating MAPS scores were 
established to predict OS rate of NSCLC patients. Joint analysis of blood microbiome data and matching tumor 
RNA-seq data was used to deciphered the tumor microenvironment landscape of patients in circulating MAPS-high 
and MAPS-low groups. Finally, the predictive value of circulating MAPS on the efficacy of immunotherapy and chemo-
therapy were assessed.

Results  A circulating MAPS prediction model consisting of 14 circulating microbes was constructed and had 
an independent prognostic value for NSCLC. The integration of circulating MAPS into nomograms may improve 
the prognosis predictive power. Joint analysis revealed potential interactions between prognostic circulating microbi-
ome and tumor immune microenvironment. Especially, intratumor plasma cells and humoral immune response were 
enriched in circulating MAPS-low group, while intratumor CD4 + Th2 cells and proliferative related pathways were 
enriched in MAPS-high group. Finally, drug sensitivity analysis indicated the potential of circulating MAPS as a predic-
tor of chemotherapy efficacy.
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Conclusion  A circulating MAPS prediction model was constructed successfully and showed great prognostic value 
for NSCLC. Our study provides new insights of interactions between microbes, tumors and immunity, and may further 
contribute to precision medicine for NSCLC.

Keywords  Circulating microbiome, Non-small cell lung cancer, Prognostic biomarkers, Tumor immune 
microenvironment, Drug sensitivity

Introduction
Lung cancer ranks first in mortality and second in mor-
bidity among malignant tumors worldwide [1]. Among 
them, non-small cell lung cancer (NSCLC) accounts for 
over 85% in terms of pathological types. Despite novel 
advancements in therapeutic strategies, the 5 year overall 
survival (OS) rate for NSCLC patients remains at a low 
level (approximately 15%) [2]. There is an urgent need to 
identify novel biomarkers associated with the prognosis 
and therapeutic efficacy of NSCLC patients and reveal 
the potential mechanisms.

Microbiota have recently emerged as novel tumo-
rigenesis regulators and biomarkers in multiple types of 
cancers, including lung cancer [3]. Microbiome dysbio-
sis contributes to cancer susceptibility and progression 
through complex mechanisms, including promoting 
inflammatory, producing toxins, causing DNA damage, 
activation of cancer-related pathways, etc. [3–7]. Besides, 
increasing evidence indicated that the enormous micro-
biome of host contributes to maintaining host-immune 
balance and shaping tumor microenvironment, thus to 
cancer progression and treatment response [8, 9]. With 
the rise of high-throughput sequencing technology, the 
microbiome has shown broad prospects for cancer diag-
nosis and treatment. Several studies have demonstrated 
the globe changes of lung microbiome between healthy 
participants and lung cancer patients, and between 
patients with different prognosis [10, 11]. However, spec-
imens from lung, such as lung biopsy tissues and bron-
choalveolar lavage fluid, are not always readily available.

After ruling out potential contaminations, research-
ers have identified circulating microbial DNA (cmDNA) 
from cancer patients’ peripheral blood [12, 13]. Periph-
eral blood flows through the whole body and can carry 
molecules from various parts of the body, including 
tumor tissues. Therefore, theoretically, cmDNA could 
show a general view of the microbiome of host. In addi-
tion, cmDNA has great advantages for clinical appli-
cation, including non-invasive operations, making it a 
promising biomarker for cancer diagnosis and progres-
sion [13]. Emerging evidence has identified the character-
istic composition patterns of cmDNA in various cancers, 
including early-onset breast cancer, prostate cancer, 
colorectal cancer, pancreatic cancer, and hepatocellular 
carcinoma [12, 14–17]. In addition, Messaritakis et  al. 

demonstrated the clinical value of cmDNA in predict-
ing cancer progression and prognosis in CRC patients. 
They found that 16S rDNA, the β-galactosidase gene of 
Escherichia coli, glutamine synthase gene of Bacteroides 
fragilis, and 5.8S rRNA of Candida albicans in peripheral 
blood were associated with the metastatic disease and 
shorter survival rates [18]. However, whether circulating 
microbiome signatures are associated with prognosis of 
NSCLC and its potential mechanism on tumor immune 
microenvironment still remains unclear.

In this study, we obtained the blood microbiome data 
and the matching tumor RNA-seq data of TCGA NSCLC 
patients, to dissect their profiling and key roles in 
NSCLC. We aimed to establish a novel and comprehen-
sive circulating microbial abundance prognostic scoring 
(MAPS) model to decipher the tumor immune micro-
environment and to predict the efficacy of chemother-
apy and immunotherapy and the prognosis of NSCLC 
patients. We believe that novel explorations of circulating 
microbiome signatures will provide a new idea of inter-
actions between microbes, tumors, and immunity, and 
provide significant clues for development and interven-
tion of NSCLC patients, which will further promote the 
development of precision medicine for NSCLC.

Materials and methods
Data acquisition
The workflow of this study is demonstrated in Fig.  1. 
All NSCLC patients in TCGA with blood microbiome 
data and survival information of any stages and grades 
(n = 109) were included in this study. For 109 NSCLC 
patients in TCGA, the clinical data, survival data, and 
both blood microbiome data and matching tumor RNA-
seq data (gene counts) were downloaded for this study 
in December 2022 (see Additional file  1). Briefly, the 
NSCLC blood microbiome data was downloaded from 
Poore’s study [19], where a total of 1553 genera were 
detected and quantified after Voom-SNM normalization 
and removing the potential contaminants. To describe 
the tumor microenvironment landscape of patients with 
NSCLC in TCGA, the matching tumor RNA-seq data 
(gene counts) and clinical data including survival infor-
mation were obtained from UCSC Xena [20]. Transcripts 
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per million (TPM) data was transformed from gene 
counts data based on gene effective length.

Construction of circulating microbial abundance 
prognostic scoring model
The TCGA NSCLC blood microbiome data of 109 samples 
was introduced to select the circulating microbial prognos-
tic signatures to construct the good-performance prognos-
tic model by using “survival” and “survminer” package in R. 
First, use univariate cox regression analysis to identify the 
candidate circulating microbial signatures that significantly 

associated with OS of patients (P < 0.05). Among them, 
multivariate cox regression analysis was then performed to 
select the circulating microbial prognostic signatures that 
independently impact OS (P < 0.05). Finally, the circulating 
microbial abundance prognostic scoring (MAPS) model of 
each patient was calculated by the linear combination of 
the OS-related microbes’ abundance and multivariate cox 
regression coefficient [21]:

Fig. 1  The workflow for comprehensive analysis of circulating microbiome in TCGA NSCLC patients
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All patients were divided into circulating MAPS-high 
and MAPS-low groups according to the optimal cut-
off value determined by the “surv_cutpoint” function. 
Kaplan–Meier curves and ROCs were used to assess the 
performance of circulating MAPS for predicting OS. 
Then, we conducted clinical relevance analyses between 
collected clinical characteristics (age, gender, T stage, N 
stage, stage and status) and circulating MAPS.

Nomogram
To assist in predicting the 1-, 3- and 5  year OS rate of 
NSCLC patients, clinical characteristics (age, subtype, 
gender and stage) and circulating MAPS scores were 
integrated to build the prognostic nomogram model by 
using the “rms” package. The time-dependent ROC and 
concordance index (C-index) was used to indicate model 
performance.

Joint analysis of tumor microenvironment and circulating 
microbiome
To describe the tumor microenvironment landscape 
of patients in circulating MAPS-high and MAPS-low 
groups, matching tumor RNA-seq data of these two sub-
types was introduced. First, we identified the overall dif-
ferentially expressed genes (DEGs) between these two 
groups by using “DESeq2” package. The KEGG and GO 
gene list was obtained from MSigDB (https://​www.​gsea-​
msigdb.​org/​gsea/​msigdb/). And “clusterProfiler”, “enrich-
plot”, and “fgsea” packages were used to perform Gene 
Set Enrichment Analysis (GSEA). Then, according to the 
ImmPort database (https://​www.​immpo​rt.​org/​home), 
immune-related DEGs were annotated and reflected 
to GO and KEGG items. The univariate cox regression 
analysis and Kaplan–Meier survival curves were used 
to evaluate the prognostic value of the immune-related 
DEGs. And we further deciphered the underlying rel-
evance of the immune-related DEGs and the circulating 
microbial prognostic signatures. Furthermore, the “xcell” 
method in “immunedeconv” package was used to assess 
the immune infiltration in tumor. Finally, we compared 

MAPS =

∑14

i=1

(

risk coefficient of microbe i
)

∗ (abundance of microbe i)

the expression levels of immune checkpoint molecules 
(PD-L1 and CTLA4) between these two groups.

Drug sensitivity
In this study, we investigated the predictive value of cir-
culating MAPS on the efficacy of immunotherapy and 
chemotherapy. Tumor Immune Dysfunction and Exclu-
sion (TIDE; http://​tide.​dfci.​harva​rd.​edu/) score was used 
to predict immunotherapy responses of each patient. 
The “oncoPredict” package in R was applied to estimate 
the drug’s half maximal inhibitory concentration (IC50) 
and predict the chemotherapy drug sensitivity of each 
patient.

Statistical analysis
All statistical analyses and graphic visualizations were 
performed in R (version 4.2.2). Student’s t-test or Wil-
coxon rank sum test were used to compare continuous 
variables between groups. P < 0.05 was considered statis-
tically significant (two-tailed).

Results
Circulating microbiome signatures were associated 
with NSCLC prognosis.
In order to elucidate the prognosis prediction value of 
circulating microbiome signatures in NSCLC patients, 
a TCGA NSCLC dataset with blood microbiome data 
was introduced. For a total of 1553 genera detected from 
109 samples (Additional file  1), the normalized micro-
bial abundance data by Voom-SNM method ranges from 
− 10.83 to 24.16, with an average of 1.06. Firstly, we iden-
tified 36 genera that significantly associated with OS of 
NSCLC patients according to the univariate cox regres-
sion analysis. (Fig.  2A, B). Among them, 22 microbes 
were considered as risk factors (hazard ratio (HR) > 1; 
P < 0.05) while 14 microbes were considered as favora-
ble factors (HR < 1; P < 0.05). We further identified 14 
OS-related genera that independently impact OS using 
multivariate cox regression analysis (Fig.  2C). Candi-
datus_Babela, Methanotorris, Anaeromusa, Hirschia, 
Parascardovia, Agreia were defined as prognosis risk 
factors, while Kozakia, Andromedalikevirus, Natrono-
coccus, Demequina, Desulfuromonas, Blastococcus, 

(See figure on next page.)
Fig. 2  Construction of the circulating MAPS model for prognosis of NSCLC patients. A Volcano plot of the candidate circulating microbial signatures 
that significantly associated with OS by a univariate cox regression. B Kaplan–Meier OS curve of the representative microbe (Candidatus_Babela). 
C Forest plot of the circulating microbial prognostic signatures that independently impact OS by a multivariate cox regression. D Optimal cutoff 
value of circulating MAPS determined by the “surv_cutpoint” function. E Kaplan–Meier OS curve of circulating MAPS. The P value was calculated 
by log-rank test between circulating MAPS-high and MAPS-low groups. F ROC illustrated the performance of circulating MAPS for predicting the 1-, 
3- and 5 year OS rate

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.immport.org/home
http://tide.dfci.harvard.edu/
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Fig. 2  (See legend on previous page.)
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Anaerobacillus, Ewingella were defined as prognosis 
favorable factors.

Furthermore, a circulating microbial abundance prog-
nostic scoring (MAPS) model was constructed to assess 
the patients’ death risk by the linear combination of the 
above 14 microbes’ abundance and multivariate cox 
regression coefficient (see Additional file  2). Based on 
the optimal cutoff value of circulating MAPS determined 
by the “surv_cutpoint” function (Fig.  2D), patients were 
divided into circulating MAPS-high group and MAPS-
low group. The Kaplan–Meier curve and log-rank test 
indicated that NSCLC patients with high circulating 
MAPS had a shorter OS than those with low circulating 
MAPS (Fig. 2E). The AUCs of circulating MAPS for pre-
dicting the 1-, 3- and 5  year OS rate were 0.890, 0.920, 
and 0.878, respectively (Fig. 2F).

Circulating MAPS was an independent prognostic indicator 
of NSCLC patients
Multivariate cox regression analysis based on circulat-
ing MAPS and clinical features (including age, sub-
type, gender and stage) were performed to determine 
whether the circulating MAPS could be an independent 
prognostic indicator. Our results indicated that circu-
lating MAPS was an independent indicator that impact 
OS (MAPS-low vs MAPS-high: HR = 0.065, 95% CI 
0.024–0.18, P < 0.001), and high pathological stages were 
associated with poor OS as expected (Stage IV vs Stage 
I: HR = 6.535, 95% CI 1.632—26.16, P = 0.008; Stage III 
vs Stage I: HR = 5.731, 95% CI 2.061–15.93, P < 0.001) 
(Fig.  3A). Furthermore, we developed nomogram sur-
vival models by integrating clinical factors without 
(Fig. 3B) and with (Fig. 3C) circulating MAPS to predict 
the 1-, 3- and 5 year OS probability of NSCLC patients. 
The C-index value of the nomogram models were 0.760 
and 0.884, respectively. The time-dependent ROCs were 
shown in Fig.  3D–E, which indicated that circulating 
MAPS may improve the prognosis predictive power. In 
summary, the circulating microbiome profile was sig-
nificantly associated with the prognosis of patients with 
NSCLC, and the prediction MAPS model consisting of 
14 microbes showed great prognostic value for NSCLC 
patients.

Circulating MAPS was closely relevant to clinical features 
of NSCLC patients
We further explored the relationship between circu-
lating MAPS and clinical features of NSCLC patients. 
As a result, we found no difference in age (P = 0.181) 
or gender (P = 0.487) between circulating MAPS-high 
and MAPS-low groups. Besides, the circulating MAPS 
scores of NSCLC patients were significantly correlated 
with clinical features, including survival outcome (alive 

or dead), pathologic T stage (T1–T4), and pathologic 
N stage (N0–N3) (Fig.  4A–C). Based on the matching 
tumor RNA-seq data of NSCLC patients, we identified 
405 differentially expressed genes (DEGs) (P.adj < 0.05 
and |log2 FC|> 1) between circulating MAPS-high and 
MAPS-low groups, which can well distinguish the two 
groups (Fig. 4D). As expected, typical proliferative gene 
sets, such as cell cycle, DNA replication and mitotic 
nuclear division pathways, were enriched in circulat-
ing MAPS-high group through GSEA. Conversely, 
immune-related gene sets, including immunoglobulin 
complex and immunoglobulin production pathways, as 
well as metabolic pathways, such as linoleic acid metab-
olism and steroid hormone biosynthesis pathways, were 
enriched in circulating MAPS-low group (Fig.  4E, F). 
These results suggested that circulating MAPS was 
closely relevant to clinical features of NSCLC patients 
and may influence prognosis by regulating proliferation 
and affecting immune and metabolic functions.

Joint analysis revealed potential immune‑microbe 
interactions
We further deciphered the host’s immune-microbe inter-
actions. According to the ImmPort database, we iden-
tified 65 immune-related DEGs (P.adj < 0.05 and |log2 
FC|> 1) in tumors between circulating MAPS-high and 
MAPS-low groups. The volcano plot and the differential 
ranking chart of the immune-related DEGs were shown 
in Fig.  5A, B. Furthermore, GO and KEGG enrichment 
analysis indicated that these immune-related DEGs are 
involved in humoral immune response, defense response 
to bacterium, immunoglobulin complex, cytokine activ-
ity, antigen processing and presentation pathways 
and et  al. (Fig.  5C). We further identified 12 immune-
related DEGs which were significantly associated with 
OS of NSCLC patients according to the univariate cox 
regression analysis and Kaplan–Meier survival analy-
sis (Fig.  5D). Among them, IGKV3D-7 and AGTR1 
were favorable factors, while DKK1, SEMA3C, HTR3A, 
VEGFC, KLRC2, EPGN, NRG2, MPO, KLRC3 and IFNE 
were risk factors (Fig.  5D). The landscape of the corre-
lation between 14 model microbes, circulating MAPS 
score and 12 OS-related immune DEGs were shown in 
Fig.  5E. The circulating MAPS risk score and progno-
sis risk microbes (Methanotorris, Hirschia and Agreia) 
were positively correlated with the prognosis risk genes, 
while the prognosis favorable microbes (Desulfuromonas 
and Blastococcus) were negatively correlated with the 
prognosis risk genes (Fig.  5E). In addition, the tumor 
immune infiltration analysis revealed that tumors with 
low circulating MAPS were infiltrated with more plasma 
B cells, while tumors with high circulating MAPS were 
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Fig. 3  Development of the nomogram survival model based on circulating MAPS. A Forest plot illustrated the independent prognostic impact 
of circulating MAPS by adjusting for clinical characteristics (including age, subtype, gender and stage). B, C Nomogram models based on clinical 
factors without B or with C circulating MAPS to predict the 1-, 3- and 5 year OS probability of NSCLC patients. D, E Time-dependent ROCs illustrated 
the performance of the nomogram models without D or with E circulating MAPS
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Fig. 4  Relationship between circulating MAPS and clinical features of NSCLC patients. A, B Boxplots and Sankey diagram showed the relationship 
between circulating MAPS risk scores and clinical features of NSCLC patients. **** P < 0.0001; ** P < 0.01; * P < 0.05. C Heatmap of 14 model microbial 
signatures and various clinical features. D Volcano plot showed the differentially expressed genes (DEGs) (P.adj < 0.05 and |log2 FC|> 1) in tumors 
between circulating MAPS-high and MAPS-low groups through DESeq2 analysis. E, F Dot plot showed all items of KEGG enrichment analysis E 
and the top five items in each group of GO enrichment analysis F through GSEA
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characterized by more CD4+ Th2 cells (Fig. 5F). Finally, 
our results showed a significant difference between these 
two groups for immune checkpoint molecule of PD-L1, 
but not for CTLA4 (Fig.  5G, H). All results above indi-
cated that the circulating MAPS and 14 model microbes 
were closely related to immune response of NSCLC 
patients, especially the humoral immune response.

Circulating MAPS was related to the efficacy 
of chemotherapy, but may have a limited competency 
to predict that of immunotherapy
Recent studies have shown the role of microbes in mod-
ulating the response to cancer treatment [13, 22]. Many 
studies have shown that patients with high PD-L1 or 
CTLA4 expression levels may benefit more from immu-
notherapy [23, 24]. We observed significant difference 
in the immune checkpoint molecule of PD-L1 between 
circulating MAPS-high and MAPS-low groups (Fig. 5G). 
Thus, we performed the TIDE immunotherapy response 
assessment to explore the prediction value of circulat-
ing MAPS on immunotherapy. However, we found no 
difference between circulating MAPS-high and MAPS-
low groups (Fig.  5I), suggesting that circulating MAPS 
may have a limited competency to predict the efficacy of 
immunotherapy.

To further elucidate the relationship between circu-
lating MAPS and chemotherapy drug sensitivity, we 
predicted each drug’s IC50 value in NSCLC patients by 
“oncoPredict” package. The results prompted the drugs 
with significant differences in therapeutic responses 
between circulating MAPS-high and MAPS-low 
groups. We found that the IC50 values of three drugs, 
including Doramapimod_1042, SB505124_1194 and 
Ribociclib_1632, were significantly higher in circulat-
ing MAPS-high group than that in MAPS-low group 
(Fig.  6A–C), suggesting that NSCLC patients with high 
circulating MAPS were more resistant to these chem-
otherapy drugs. Conversely, the IC50 values of five 
drugs, including GSK1904529A_1093, Gefitinib_1010, 
Crizotinib_1083, Dabrafenib_1373 and KRAS (G12C) 
Inhibitor-12_1855 were significantly higher in circulat-
ing MAPS-low group than that in MAPS-high group 
(Fig.  6D–H), suggesting that NSCLC patients with high 
circulating MAPS may benefit more from these drugs. 

Besides, we found that circulating Candidatus_Babela 
were also associated with the effect of Dabrafenib_1373, 
Crizotinib_1083, and GSK1904529A_1093 (Fig.  6I–K), 
which may contribute to personalized chemotherapy pre-
dictions. Interestingly, our results showed that the effect 
of KRAS (G12C) Inhibitor-12_1855 was closely corre-
lated with age (R = 0.239, P = 0.028), suggesting that age 
may also play a non-negligible role in chemotherapy drug 
sensitivity.

Discussion
Novel explorations of microbiome signatures provide 
new ideas for cancer progression. In this study, we iden-
tified 14 OS-related circulating microbes to construct 
a circulating MAPS prediction model and assessed 
its independent prognostic value in NSCLC patients. 
Furthermore, we deciphered its potential mechanism 
on tumor immune microenvironment. Finally, we pro-
posed that circulating MAPS may be a potential bio-
marker of chemotherapy sensitivity in NSCLC patients. 
Our study provides a new idea for cancer development 
and immune-microbe interactions, and may contribute 
to personalized intervention of NSCLC patients.

Currently, cancer-related biomarkers are mainly iden-
tified from genomic or proteomic profiles. In recent 
years, the previously underestimated role of the micro-
biome in cancers has been highlighted for its promis-
ing potential in cancer development and treatment 
[13]. Previous studies have confirmed the important 
role of lung microbiome in lung cancer progression and 
intervention [10, 11]. However, given the routine inac-
cessibility of lung tissues, other sources of microbial 
dysbiosis, such as in the gut, sputum and blood, may 
be also associated with lung cancer and are attracting 
more attention [25–28]. For example, Zhang et al. ana-
lyzed the gut microbiome composition of lung cancer 
patients and healthy volunteers, and found higher lev-
els of Bacteroides, Veillonella, and Fusobacterium in 
lung cancer patients [25]. Hakozaki et al. and Qiu et al. 
reported that gut microbiome was associated with the 
response to immunotherapy and chemoradiotherapy 
in NSCLC patients [27, 28]. However, few studies have 
explored the relevance between blood microbiome sig-
natures and lung cancer, which is non-invasive and can 

Fig. 5  Decipherment of the tumor immune microenvironment based on circulating MAPS. A, B Volcano plot A and ranking chart B 
of the immune-related DEGs in tumors between circulating MAPS-high and MAPS-low groups. C GO and KEGG enrichment analysis 
based on the immune-related DEGs. D Kaplan–Meier OS curves of 12 immune-related DEGs. The P value was calculated by log-rank test 
between DEG-high and DEG-low groups. E Bubble plot of the relationship between 14 model microbes, circulating MAPS score and 12 OS-related 
immune DEGs. F Differences in xCell scores of plasma B cells and CD4+ Th2 cells between circulating MAPS-high and MAPS-low groups. G–I 
Differences in PD-L1 expression levels G, CTLA4 expression levels H and the TIDE scores I between circulating MAPS-high and MAPS-low groups

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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reflect a general view of the microbiome of host [13]. 
Only Poore et al. explored the clinical value of cmDNA 
in the diagnosis of lung cancer by mining TCGA data 
and training machine learning models [12]. As the first 
study focusing on the role of circulating microbiome 
signatures in NSCLC prognosis and tumor immune 
microenvironment, we uncovered that the circulat-
ing MAPS served as an independent prognostic factor 
of NSCLC and preliminarily revealed the interactions 

between microbes, tumors and immunity. Among 
the 14 OS-related microbiome signatures included in 
MAPS, oral Parascardovia was found to be relevant to 
betel nut chewing, and the latter was an independent 
predictor of oral premalignant lesions [29]. However, 
the role of the remaining microbes in the development 
of cancers has not been reported yet.

Characterizing the circulating microbiome and its 
underlying mechanism on cancer patients is of great 

Fig. 6  Prediction of chemotherapy drug sensitivity based on circulating microbiome signatures. A–H Boxplots and correlation plots 
of the comparison in IC50 values of Doramapimod_1042 A, SB505124_1194 B, Ribociclib_1632 C, Gefitinib_1010 D, GSK1904529A_1093 E, 
Crizotinib_1083 F, Dabrafenib_1373 G and KRAS (G12C) Inhibitor-12_1855 H between circulating MAPS-high and MAPS-low groups. The blue 
box represented circulating MAPS-high group, and the red box represented circulating MAPS-low group. I–K Boxplots and correlation plots 
of the comparison in IC50 values of Dabrafenib_1373 I, Crizotinib_1083 J and GSK1904529A_1093 K between circulating Candidatus_Babela-high 
and Candidatus_Babela-low groups. The blue box represented circulating Candidatus_Babela-low group, and the red box represented circulating 
Candidatus_Babela-high group. *** P < 0.001; ** P < 0.01; * P < 0.05
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interest. The enormous microbiome of the human body 
plays a significant role in shaping the host immune 
characteristics [30–32]. The mutual adaptation process 
between human microbiome and immune can affect the 
response of immune system to malignant cells and thus 
impact the effectiveness of anti-tumor immune response 
[8]. Previous studies have demonstrated a link between 
the intratumor microbiome and immune characteristics 
[9, 26]. On the one hand, the intratumor microbiome 
may contribute to cancer development by promoting 
a pro-carcinogenic inflammatory cascade, shaping an 
immunosuppressive tumor microenvironment or T cell 
dysfunction [33–35]. On the other hand, the intratumor 
microbiome can also play an active role in anti-tumor 
immune response by tumor neoantigen mimicry by 
microbes, T and NK cell activation, and regulating other 
immune cells [36–38]. Based on the above studies, we 
wonder whether the circulating microbiome is relevant to 
the intratumor immune characteristics, and thus to can-
cer progression. It’s interesting that we found the intra-
tumor plasma B cells and the humoral immune response 
related pathways, such as immunoglobulin complex and 
immunoglobulin production pathways, were enriched 
in NSCLC patients with low circulating MAPS, who 
had a longer OS and a better prognostic outcome. Pre-
vious studies have found that B cells and plasma cells in 
NSCLC are associated with better outcomes [39–41]. 
In recent years, researchers have shown that B cells and 
plasma cells infiltrated in tumors can play a significant 
role in shaping anti-tumor immune responses [40, 42]. 
Plasma cells may produce large amounts of cytokines and 
tumor-antigen-specific antibodies, leading to antibody-
dependent cellular cytotoxicity (ADCC) and complement 
activation [42, 43]. Besides, B cells can act as antigen-pre-
senting cells (APCs) to present specific antigens to CD4 
and CD8 T cells, and thereby maintain and expand long-
term antitumor immunity within the tumor microenvi-
ronment [44, 45]. It is important to note that the above 
effective antitumor immune response is premised on the 
recognition of tumor antigens. The tumor neoantigen 
mimicry by microbes reported previously may explain 
one of the mechanisms by which the circulating micro-
biome participate in the antitumor immune response 
described above [36, 46]. In addition, it’s well known that 
Th2 cells contribute to cancer progression and metastasis 
by secreting IL-4, IL-5, IL-10 and IL-13 [47, 48]. Consist-
ent with this, our study revealed an increased CD4+ Th2 
cells infiltration in NSCLC tumors with high circulat-
ing MAPS. Besides, we found that DDK1 was associated 
with poor prognosis of NSCLC patients and positively 
correlated to circulating MAPS in this study, which have 
been reported to promote tumor progression and nega-
tively regulate antitumor immunity [49]. In addition, 

it’s interesting that linoleic acid metabolism and steroid 
hormone biosynthesis pathways were enriched in cir-
culating MAPS-low group, which may help alleviate the 
pathological features and improve the anti-tumor abil-
ity of patients [50–52]. What’s more, we observed that 
patients with high circulating MAPS exhibited significant 
proliferation characteristics. And it may also suggest one 
of the mechanisms by which circulating microbes impact 
tumor progression.

Currently, conventional antitumor treatments include 
chemotherapy, radiotherapy, immunotherapy and et  al. 
However, not all patients benefit from the above thera-
pies, so it’s urgent to explore new prognostic biomark-
ers for individualized treatment of NSCLC patients. In 
recent years, studies have reported that microbes play an 
important role in regulating response to antitumor treat-
ments [22, 53–56]. For example, Fusobacterium nuclea-
tum were found to promote chemotherapy resistance by 
modulating autophagy [57]. Recently, the gut microbiome 
has been reported as promising predictive biomarkers of 
chemotherapy and immunotherapy sensitivity in cancer 
patients [58–60]. We wondered if the circulating MAPS 
prognostic score identified in this study could be useful 
in predicting chemotherapy or immunotherapy sensitiv-
ity. Our results suggested that the circulating MAPS may 
contribute to chemotherapy sensitivity prediction, which 
may help develop personalized cancer treatment strate-
gies. However, although the expression levels of PD-L1 
differed between circulating MAPS-high and MAPS-
low groups, the TIDE (Tumor Immune Dysfunction and 
Exclusion) scores showed no difference between these 
two groups. The predictive value of circulating microbi-
ome signatures on immunotherapy remains to be further 
explored.

Although the circulating MAPS model performed well 
in prognosis prediction of NSCLC patients, there are 
some limitations deserving further discussion. A major 
limitation was that there was no additional publicly avail-
able dataset to validate our findings. In addition, as a sec-
ondary analysis of retrospective data, it’s hard to control 
the various potential confounding factors among partici-
pants. Therefore, it is necessary to design comprehensive 
prospective multicenter studies to verify the prognostic 
performance of circulating microbiome signatures. Fur-
thermore, our study preliminarily deciphered the rela-
tionship between circulating microbiome signatures 
and tumor microenvironment and prognosis in NSCLC, 
while the causal relationship and underlying mechanisms 
need to be further explored.
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Conclusion
We identified 14 OS-related circulating microbes and 
successfully construct a circulating MAPS model for 
prognosis prediction of NSCLC patients. Furthermore, 
joint analysis revealed potential interactions between 
circulating microbiome signatures and tumor immune 
microenvironment, especially the humoral immune 
response. Finally, drug sensitivity analysis indicated the 
potential of circulating MAPS as a biomarker of chemo-
therapy efficacy in NSCLC patients. Our study provides 
new insights of interactions between microbes, tumors, 
and immunity, and may further promote the develop-
ment of precision medicine for NSCLC.
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