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Abstract 

Background  Previous studies have assessed the association between antidiabetic drugs and stroke risk, 
but the results are inconsistent. Mendelian randomization (MR) was used to assess effects of antidiabetic drugs 
on stroke risk.

Methods  We selected blood glucose-lowering variants in genes encoding antidiabetic drugs targets from genome-
wide association studies (GWAS). A two-sample MR and Colocalization analyses were applied to examine associations 
between antidiabetic drugs and the risk of stroke. For antidiabetic agents that had effect on stroke risk, an independ-
ent blood glucose GWAS summary data was used for further verification.

Results  Genetic proxies for sulfonylureas targets were associated with reduced risk of any stroke (OR=0.062, 95% 
CI 0.013-0.295, P=4.65×10－4) and any ischemic stroke (OR=0.055, 95% CI 0.010-0.289, P=6.25×10－4), but not with 
intracranial hemorrhage. Colocalization supported shared casual variants for blood glucose with any stroke and any 
ischemic stroke within the encoding genes for sulfonylureas targets (KCNJ11 and ABCC8) (posterior probability>0.7). 
Furthermore, genetic variants in the targets of insulin/insulin analogues, glucagon-like peptide-1 analogues, thia-
zolidinediones, and metformin were not associated with the risk of any stroke, any ischemic stroke and intracranial 
hemorrhage. The association was consistent in the analysis of sulfonylureas with stroke risk using an independent 
blood glucose GWAS summary data.

Conclusions  Our findings showed that genetic proxies for sulfonylureas targets by lowering blood glucose were 
associated with a lower risk of any stroke and any ischemic stroke. The study might be of great significance to guide 
the selection of glucose-lowering drugs in individuals at high risk of stroke.
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Background
Stroke is one of the leading causes of death and dis-
ability worldwide [1, 2]. Diabetes is associated with a 
substantially increased risk of stroke. A meta-analysis 
of the prospective studies showed that the hazard ratio 
of ischemic stroke and haemorrhagic stroke in patients 
with diabetes was 2.27 and 1.56 compared with those 
without diabetes [3], and at the population level, dia-
betes may lead to > 8% of the first ischemic stroke [4]. 
In addition, stroke outcomes in diabetic patients are 
worse, leading to increased mortality and disability [4]. 
Therefore, the way to prevent stroke in these patients 
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has become an important issue. Most diabetic patients 
control blood glucose by taking antidiabetic drugs. 
Although most major trials of antidiabetic drugs have 
focused on glucose-lowering properties, it is crucial to 
study whether an anti-diabetic drug has a protective 
effect against stroke, and whether one drug is better 
than another.

Previous studies have evaluated the effect of antidia-
betic drugs on stroke risk. The accumulated evidence 
suggested that metformin, pioglitazone and semaglu-
tide reduce stroke risk [5]. A meta-analysis using data 
from randomized clinical trials of antidiabetic drugs was 
conducted to study the association between glucose-
lowering treatment and the risk of stroke [6]. The results 
showed that glucagon-like peptide-1 receptor (GLP-1) 
agonists and thiazolidinediones (TZD) reduced the risk 
of stroke, while sulfonylureas (SU), dipeptidyl pepti-
dase-4 (DPP-4) inhibitors, sodium-glucose cotransporter 
2 (SGLT2) inhibitors, alpha-glucosidase inhibitors, meg-
litinides, and metformin had no effect on stroke risk. 
Although these trials assessed the effect of antidiabetic 
drugs on stroke risk, the results of these trials must be 
carefully compared and contrasted given the differences 
in the enrolled populations and trial design.

Mendelian randomization (MR), which uses genetic 
variants as proxies for traits of interest, is used to assess 
causal association. MR is less susceptible to confounders 
and can avoid reverse causality compared with observa-
tional studies [7, 8]. Here, we used genetic data on blood 
glucose and stroke to examine the effects of genetic prox-
ies for antidiabetic drugs targets on stroke risk using MR.

Methods
This study followed the Strengthening the Reporting of 
Observational Studies in Epidemiology Using Mendelian 
Randomization (STROBE-MR) guide [9]. A flow diagram 
summarizing the study was shown in Fig. 1.

Genetic instrument selection
Five major classes of antidiabetic drugs were initially 
identified, including sulfonylureas, insulin/insulin 
analogues, GLP-1 analogues, thiazolidinediones and 
metformin [10]. Genetic variants for drug targets of 
sulfonylureas, insulin/insulin analogues, GLP-1 ana-
logues, and thiazolidinediones were selected according 
to the method reported by Tang et  al. using blood glu-
cose GWAS summary data in 326,885 participants of 
European ancestry from UK Biobank [11]. In the study 
of Tang et  al., rs757110, which has been validated as a 

Fig. 1   A flow diagram summarizing the study. MR, Mendelian randomization; IVW, inverse variance weighted; GWAS, genome-wide association 
study; T2DM, type 2 diabetes mellitus; BMI, body mass index; WC, waist circumference; HIP, hip circumference
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strong proxy of sulfonylureas in previous studies, was 
chosen as an additional variant of sulfonylureas. In short, 
the cis-variants within each encoding gene of drug target 
(± 2500 base pairs of the gene location) were identified 
and the variants associated with blood glucose at a false 
discovery rate of < 0.05 were retained. Palindromic sin-
gle-nucleotide variations were excluded to avoid ambigu-
ity in the identification of effect alleles. The variants were 
then clumped with a R2 of 0.01 and a window size of 500 
kB.

In addition, genetic variants for drug targets of met-
formin were selected according to the method reported 
by Zheng et  al. using glycated hemoglobin (HbA1c) 
GWAS summary data in 415,576 individuals of Euro-
pean ancestry from UK Biobank [12]. In short, drug tar-
gets and encoding genes of metformin were identified. 
Genetic variants near each of the metformin genes that 
associated with both the glycaemic biomarker HbA1c 
and the expression level of the corresponding gene were 
selected. After validation, the genetic predictors for each 
target were generated, with effects quantified as the 
HbA1c-lowering effect of the target.

Information for the GWAS datasets used in our study 
was summarized in Additional file  1. Detailed informa-
tion on genetic variants for drug targets was shown in 
Additional files 2, 3.

Outcome
We focused on the effect of antidiabetic drugs on the 
risk of stroke, including any stroke (comprising ischemic 
stroke, intracerebral hemorrhage, and stroke of unknown 
or undetermined type), any ischemic stroke and intracer-
ebral hemorrhage (ICH).

Genetic association estimates for any stroke, and any 
ischemic stroke were obtained from the MEGASTROKE 
GWAS meta-analysis restricted to Europeans (40,585 
cases of any stroke, 34,217 cases of ischemic stroke, and 
406,111 controls) [13].

Summary statistics for ICH were available from the 
International Stroke Genetics Consortium (ISGC) 
GWAS meta-analysis of European descent (1545 cases 
and 1481 controls) [14]. ICH was defined as a new acute 
neurological defect. Moreover, the presence of intra-
parenchymal bleeding was demonstrated using brain 
imaging (computed tomography or magnetic resonance 
imaging).

MR study.
Causal effects were estimated with the random-

effects inverse variance weighted (IVW) method for 
mutiple SNPs. For single SNP, Wald Ratio method was 
used to estimate the causal effects. The random-effects 
IVW method, the main method of the study, essentially 
assumed a zero intercept and performed a weighted 

regression of the SNP-exposure effects with the SNP-
outcome effects. For the lowering effects of blood glu-
cose by antidiabetic drugs (sulfonylureas, insulin/insulin 
analogues, GLP-1 analogues and thiazolidinediones), all 
estimations were scaled to per 1 mmol/L decrement in 
blood glucose. For the lowering effects of HbA1c by met-
formin, the estimations were equivalent to a 6.75 mmol/
mol (1.09%) reduction on HbA1c. Multiple tests of three 
outcomes were adjusted by Bonferroni correction with 
significance level of P value < 0.017(0.05/3).

Pleiotropy analysis was mainly based on the MR-Egger 
intercept test and the heterogeneity test using Cochran’s 
Q statistic [15, 16]. The above analyses showed statisti-
cally significant differences when P value < 0.05. Sta-
tistical analyses were performed in R version 4.1.2 
(TwoSampleMR packages).

Colocalization analysis
If the targets of antidiabetic drugs were associated with 
stroke as identified by MR, we further performed the 
colocalization between blood glucose/HbA1c and stroke 
within the target gene region.

In colocalization analysis, there are five hypotheses 
[17]: H0: no association with either trait; H1: association 
with trait 1, not with trait 2; H2: association with trait 2, 
not with trait 1: H3: association with trait 1 and trait 2, 
two independent SNPs; H4: association with trait 1 and 
trait 2, one shared SNP. Evidence for colocalization was 
defined as the posterior probability for shared causal var-
iants greater than 0.7 (posterior probability of hypothesis 
4 > 0.7). Colocalization analysis was performed using R 
package Coloc.

MR validation study using an independent blood glucose 
GWAS
Through the above analyses, for antidiabetic agents that 
have effect on the risk of stroke, an independent blood 
glucose GWAS summary data was selected for further 
verification.

We chose the summary data of blood glucose GWAS, 
based on 63,406 individuals of European ancestry from 
Chen et al. [18]. In the study, individuals were excluded 
if they had type 1 or type 2 diabetes (defined by physician 
diagnosis); reported use of diabetes-relevant medica-
tions; or had a FG ≥ 7 mmol/L, 2hGlu ≥ 11.1mmol/L, or 
HbA1c ≥ 6.5%. 2hGlu measures were obtained 120  min 
after a glucose challenge in an oral glucose tolerance test 
(OGTT).

We further selected genetic variants as proxies for the 
blood glucose lowering effects of common antidiabetic 
drugs. Information on pharmacologically active protein 
targets and corresponding encoding genes of the anti-
diabetic agents was obtained from the DrugBank and 
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ChEMBL databases (Additional file  4) [19, 20]. SNPs 
associated with blood glucose at genome-wide signifi-
cance level (p < 1 × 10-5) and within ± 100  kb windows 
from the gene region for drug targets of antidiabetic 
drugs were obtained. For drug targets, SNPs used as 
proxies were permitted to be in weak linkage disequilib-
rium (r2 < 0.40) with each other to increase the propor-
tion of variance explained by the instrument, maximizing 
statistical power.

For the antidiabetic drugs, including instruments at 
moderate to low LD (r2 < 0.4), generalized linear regres-
sion analyses weighted were applied for the correla-
tion between the instruments, as previously described 
[21]. Multiple tests of three outcomes were adjusted 
by Bonferroni correction with significance level of P 
value < 0.017(0.05/3).

Pleiotropy analysis, heterogeneity test and colocali-
zation analysis were carried out in accordance with the 
above methods. Statistical analyses were performed in 
R version 4.1.2 (MendelianRandomization and Coloc 
packages).

Moreover, to validate our selection of instrumental 
variables (IVs) from the blood glucose GWAS summary 
statistics by Chen et  al., positive control analyses were 
performed with type 2 diabetes mellitus, insulin secre-
tion and obesity-related traits as outcomes. Type 2 dia-
betes mellitus is the original indication of antidiabetic 
drugs, while TZD and metformin increase insulin sen-
sitivity and sulfonylureas and GLP-1 analogues promote 
insulin secretion [10]. Obesity is another phenotype that 
is affected by antidiabetic drugs. A meta-analysis of clini-
cal trials showed that insulin analogues, sulfonylureas, 
and TZD cause weight gain, and GLP-1 analogues con-
tribute to weight loss [22]. Hence, three obesity related 
traits, including body mass index (BMI), waist circumfer-
ence (WC), and hip circumference (HIP), were used as 
outcomes. Genetically predicted drug effects that showed 
directional consistency with clinical trial evidence / drug 
mechanisms were considered to pass the positive control 
analyses. Information for the GWAS datasets of type 2 
diabetes, insulin secretion and obesity related traits used 
in our study was summarized in Additional file 1 [23–26].

Results
Genetic proxies for antidiabetic drugs targets and risk 
of stroke
MR study
We selected blood glucose-lowering variants in genes 
encoding drug targets as proxies for the effects of sulfo-
nylureas, insulin/insulin analogues, GLP-1 analogues, 
and thiazolidinediones. The validated proxy in sulfony-
lureas targets (rs757110) was associated with reduced 
risk of any stroke (OR = 0.062, 95% CI 0.013–0.295, 

P = 4.65 × 10-4) and any ischemic stroke (OR = 0.055, 
95% CI 0.010–0.289, P = 6.25 × 10−4) (Fig.  2). Genetic 
variants in the targets of sulfonylureas also showed pro-
tective effects on any stroke (OR = 0.256, 95% CI 0.028–
2.375, P = 0.230) and any ischemic stroke (OR = 0.226, 
95% CI 0.022–2.334, P = 0.212), although the effect sizes 
attenuated toward the null. Genetic variants in the tar-
gets of sulfonylureas were not associated with ICH risk 
(Table  1). Furthermore, genetic variants in the targets 
of insulin/insulin analogues, GLP-1 analogues, and thia-
zolidinediones were not associated with the risk of any 
stroke, any ischemic stroke and ICH (Fig. 2; Table 1).

For metformin, there was no causal relationship 
between metformin with the risk of any stroke, any 
ischemic stroke and ICH (Fig. 3).

There were heterogeneity but no pleiotropy within IVs 
of sulfonylureas. No heterogeneity and pleiotropy within 
IVs of other antidiabetic drugs were observed (Figs. 2 and 
3).

Colocalization analysis for sulfonylureas
Through MR analysis, the causal association between sul-
fonylureas with any stroke, and any ischemic stroke was 
showed. And then colocalization analysis was performed 
for sulfonylureas with any stroke, and any ischemic 
stroke within the drug target encoding genes (± 2500 base 
pairs of KCNJ11 and ABCC8 ). The results were shown 
in Table 2. In general, we provided supporting evidence 
of colocalization between blood glucose with any stroke, 
and any ischemic stroke within two gene regions of sulfo-
nylureas (posterior probability for a shared causal variant, 
any stroke: 0.785 in KCNJ11 and 0.739 in ABCC8; any 
ischemic stroke: 0.750 in KCNJ11 and 0.728 in ABCC8). 
The regional association plots for the variants within 
KCNJ11 and ABCC8 of blood glucose with any stroke, 
and any ischemic stroke were shown in Figs. 4 and 5.

Validation study using an independent blood glucose 
GWAS
MR study
Through the above analyses, our fingdings suggested that 
sulfonylureas were associated with stroke risk. Using an 
independent blood glucose GWAS for validation, 2 vari-
ants for sulfonylureas and the validated proxy-rs757110 
(Additional file  5) were identified. Genetic variants in 
sulfonylureas targets had protective effects on risk of 
any stroke and any ischemic stroke, but not on ICH risk 
(Fig.  6). The association was consistent in the analy-
sis using the validated proxy, rs757110 (Fig.  6). For all 
the estimates, no heterogeneity within IVs was detected 
(Fig. 6).
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Fig. 2  Estimated effects of genetic variants in antidiabetic drugs targets on any stroke and any ischemic stroke

Table 1  Estimated effects of genetic variants in antidiabetic drugs targets on intracerebral hemorrhage

Drug class Proxy genes OR (95% CI) P value

Sulfonylureas KCNJ11 + ABCC8 0.781 0.001−434.992 0.939

rs757110 0.700 2.02 × 10−4−2425.925 0.932

Insulin/Insulin analogues INSR 1,122,841 0.031–4.01 × 1013 0.116

GLP-1 analogues GLP1R 0.029 3.39 × 10−9−248751.7 0.664

Thiazolidinediones PPARG​ 4.26 × 10−5 8.46 × 10−12−214.564 0.201

Fig. 3  Estimated effects of genetic variants in metformin targets on stroke
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Positive control analyses
In order to validate the strength of our IVs, a set of pos-
itive control analyses of genetic variants in sulfonylu-
rea targets were conducted. As shown in Fig. 7, genetic 
variants in the targets of sulfonylureas were associ-
ated with decreased risk of type 2 diabetes mellitus 
and increased BMI. No significant causal relationship 
between genetic variants in the targets of sulfonylureas 
and insulin secretion, WC and HIP was found. When 
looking into the validated proxy, rs757110 was associ-
ated with decreased type 2 diabetes mellitus risk and 
increased insulin secretion, consistent with the drug 
mechanism of actions. For obesity-related traits, the 
estimates for rs757110 suggested increment in BMI, 
WC, and HIP, consistent with evidence from the meta-
analysis of clinical trials [22]. Positive control analyses 
that showed directional consistency with clinical trial 
evidence / drug mechanisms meant the robustness of 
our instrumental variables.

Colocalization analysis for sulfonylureas in validation study
Colocalization analysis for sulfonylureas with any 
stroke and any ischemic stroke within the drug tar-
get encoding genes (± 100  kb of KCNJ11 and ABCC8 
) were performed. The results were shown in Table 3.

Similarly, using an independent blood glucose 
GWAS, we suggested colocalization between blood 
glucose with any stroke and any ischemic stroke within 
two gene regions of sulfonylureas (posterior prob-
ability for a shared causal variant, any stroke: 0.760 
in KCNJ11 and 0.759 in ABCC8; any ischemic stroke: 
0.708 in KCNJ11 and 0.707 in ABCC8). The regional 
association plots for the variants within KCNJ11 and 
ABCC8 of blood glucose with any stroke, and any 
ischemic stroke were shown in Figs. 8 and 9.

Discussion
Using genetic proxies for antidiabetic drugs targets, 
our results showed sulfonylureas were associated with 
lower risk of any stroke and any ischemic stroke, but 
not with ICH. In addition, Bayesian colocalization 
method was used to eliminate the bias caused by link-
age disequilibrium. Using 0.7 as a posterior probability 
threshold, a high probability of shared casual variants 
for blood glucose and stroke within the encoding genes 
for sulfonylureas (KCNJ11 and ABCC8) was suggested. 
However, there was no causal association between 
other antidiabetic drugs (including insulin/insulin ana-
logues, GLP-1 analogues, thiazolidinediones and met-
formin) and stroke risk. It is essential to reduce the 
burden of stroke by reducing the incidence of stroke 
in patients with diabetes through the use of antidia-
betic drugs. Our study provides supportive suggestions 
for the priority choice of sulfonylureas as antidiabetic 
drugs in diabetic patients at high risk of ischemic 
stroke.

In clinical trials, long-term lowering of blood glu-
cose had modest effect on stroke risk. A meta-analysis 
summarizing the effects of glucose-lowering drugs on 
stroke risk showed that glucagon-like peptide-1 recep-
tor agonists and thiazolidinediones reduced stroke risk, 
while sulfonylureas, dipeptidyl peptidase-4 inhibitors, 
metformin, sodium-glucose cotransporter 2 inhibitors, 
α-glucosidase inhibitors, and meglitinides had no signifi-
cant effect on stroke risk [6].

In our study, using genetic data, among the five anti-
diabetic drugs, only sulfonylureas reduced the risk of any 
stroke and any ischemic stroke. Any stroke comprised 
ischemic stroke, intracerebral hemorrhage, and stroke of 
unknown or undetermined type. In any stroke GWAS, 
any stroke patients included nearly 85% ischemic stroke 
cases, and sulfonylureas had no effect on the risk of 

Table 2  Colocalization results in the target gene region of sulfonylureas for blood glucose and stroke

The region was defined as ± 2.5 kb of gene region

PP indicates posterior probability

H0: neither trait has a genetic association in the region

H1: only stroke has a genetic association in the region

H2: only blood glucose has a genetic association in the region

H3: both traits are associated, but with different causal variants

H4: both traits are associated and share a single causal variant

Drug class Stroke Gene PP.H0 PP.H1 PP.H2 PP.H3 PP.H4

Sulfonylureas Any stroke KCNJ11 1.40e−07 5.19e−09 2.08e−01 6.92e−03 0.785

ABCC8 3.09e−07 5.93e−09 2.57e−01 4.20e−03 0.739

Sulfonylureas Any ischemic stroke KCNJ11 1.62e−07 6.73e−09 2.41e−01 9.25e−03 0.750

ABCC8 3.22e−07 6.15e−09 2.68e−01 4.40e−03 0.728
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Fig. 4  Regional plots for the associations of blood glucose and any stroke within ± 2.5 kb of KCNJ11 and ABCC8
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Fig. 5  Regional plots for the associations of blood glucose and any ischemic stroke within ± 2.5 kb of KCNJ11 and ABCC8
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hemorrhagic stroke. Therefore, this study suggested that 
sulfonylureas mainly reduced the risk of ischemic stroke.

Sulfonylureas have been used in the treatment of type 
2 diabetes mellitus for more than 60 years due to their 
good blood glucose-lowering properties and low eco-
nomic cost. They exhibit principal antidiabetic properties 
by inhibiting KATP channels and promoting increased 
insulin secretion from pancreatic beta cells [27, 28]. Pre-
vious studies have investigated the effect of sulfonylureas 
on stroke risk, but the results are rather inconclusive. 
A recent meta-analysis of 17 trials and 27,705 subjects 
showed that patients with type 2 diabetes who received 
sulfonylureas treatment had a higher relative risk of 
stroke morbidity than those who received comparator 
drugs [29]. The meta-analysis compared the incidence of 
stroke in diabetic patients who used sulfonylureas with 
those who used other drugs, but the results did not prove 
that sulfonylureas increased the risk of stroke. We sug-
gested that they should compare patients on sulfonylu-
reas treatments with those not on antidiabetic drugs to 
make the results more convincing.

Using MR, the Copenhagen study showed a risk ratio 
of 1.48 ( 1.04, 2.11) for ischemic stroke with a glucose 
increase of 1 mmol/ L. The corresponding risk ratio 

from the MEGASTROKE study combined with the 
Copenhagen studies was 1.74 (1.31, 2.18) [6]. They sug-
gested that elevated blood glucose increased the risk of 
ischemic stroke. Chronic hyperglycemia and advanced 
glycosylation end-products (AGE) contribute to ‘acceler-
ated atherosclerosis’ through the induction of endothe-
lial damage and cellular dysfunction, leading to cerebral 
vascular damage [30]. In our study, the reduction in 
blood glucose through variants in genes encoding tar-
gets of sulfonylureas was associated with a significantly 
lower risk of ischemic troke. Sulfonylureas exhibit blood 
glucose lowering properties by inhibiting KATP chan-
nels and promoting insulin secretion by pancreatic beta 
cells [27, 28]. The KATP channel in pancreas is a com-
plex composed of four subunits of KCNJ11 gene product 
Kir6.2 and four subunits of ABCC8 gene product SUR1 
[31]. Sulfonylureas bind to SUR1 and block KATP chan-
nel. Thus, sulfonylureas might reduce endothelial dam-
age and cellular dysfunction by lowering blood glucose, 
reducing the risk of ischemic stroke. This study showed 
that other antidiabetic drugs did not reduce the risk of 
ischemic stroke by lowering blood glucose, which may be 
attributed to the different mechanisms of lowering blood 
glucose. However, the mechanisms underlying the effects 

Fig. 6  Estimated effects of genetic variants in sulfonylureas targets on stroke using an independent blood glucose GWAS summary data
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of different antidiabetic drugs on stroke risk are worth 
further investigation.

In addition, the direct effects of sulfonylureas on the 
brain warrant attention. In the brain, SUR1 serves as 
a regulatory subunit for both the KATP channel and a 

nonselective cation channel, NCCa-ATP [32]. Ischemic 
conditions are reported to trigger opening of both KATP 
and NCCa-ATP channels. Activation of KATP channels 
plays a neuroprotective role in ischemia, while sulfonylu-
reas treatment may inhibit the neuroprotective effects of 

Fig. 7  Estimated effects of genetic variants in sulfonylureas targets on glucose metabolism-related traits and obesity-related traits

Table 3  Colocalization results in the target gene region of sulfonylureas for blood glucose and stroke in validation study

The region was defined as ± 100 kb of gene region

PP indicates posterior probability

H0: neither trait has a genetic association in the region

H1: only stroke has a genetic association in the region

H2: only blood glucose has a genetic association in the region

H3: both traits are associated, but with different causal variants

H4: both traits are associated and share a single causal variant

Drug class Stroke Gene PP.H0 PP.H1 PP.H2 PP.H3 PP.H4

Sulfonylureas Any stroke KCNJ11 4.5e−03 3.0e−04 2.21e−01 1.45e−02 0.760

ABCC8 4.5e−03 3.0e−04 2.21e−01 1.49e−02 0.759

Sulfonylureas Any ischemic stroke KCNJ11 5.0e−03 4.0e−04 2.66e−01 2.0e−02 0.708

ABCC8 5.0e−03 4.0e−04 2.66e−01 2.1e−02 0.707
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Fig. 8  Regional plots for the associations of blood glucose and any stroke within ± 100 kb of KCNJ11 and ABCC8 in validation study
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Fig. 9  Regional plots for the associations of blood glucose and any ischemic stroke within ± 100 kb of KCNJ11 and ABCC8 in validation study
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KATP channels and increase the risk of stroke [29]. How-
ever, NCCa-ATP channel is crucially involved in develop-
ment of cerebral edema. The use of sulfonylureas to bind 
SUR1 and then block NCCa-ATP channel is beneficial 
for stroke and may provide a new therapeutic approach 
to stroke [33]. Thus, sulfonylureas might have both ben-
eficial and harmful direct effects on the brain. Given the 
poor penetration of sulfonylureas across the blood-brain 
barrier [34], the direct effects of sulfonylureas on the 
brain in diabetic patients without stroke may be very lim-
ited. Whether sulfonylureas therapy reduces or increases 
the risk of ischemic stroke in these patients by lowering 
blood glucose becomes even more important.

The present MR study differs from previous observa-
tional studies in three key aspects. First, observational 
studies were done in patients with diabetes, making it 
impossible to separate the true effects of the drugs from 
that of diabetes. Meanwhile, the current MR study inves-
tigated genetically predicted drug effects in the general 
population without diabetes. Second, observational stud-
ies measured drug use at baseline, but poor monother-
apy compliance might lead to contamination. In our MR 
study, drug compliance was not a major concern because 
genetic exposure was lifelong. Finally, unmeasured con-
founding factors may also be an issue in observational 
studies. Conversely, MR is expected to be less affected by 
confounders due to random allocation of genetic variants 
at conception. Thus, our study provided evidence that 
sulfonylureas reduced the risk of ischemic stroke by low-
ering blood glucose.

The current MR research has several advantages. First, 
a set of positive control analyses to verify the strength of 
our IVs were performed. Second, two sets of validated 
genetic proxies for sulfonylureas were used, and then a 
relatively consistent reduced risk of ischemic stroke was 
observed, further supporting the putative causal relation-
ship between sulfonylureas and ischemic stroke.

The study has several limitations. First, our study could 
only predict the target effects of antidiabetic drugs. In our 
MR model, off-target effects that are not exerted through 
these protein targets cannot be captured. Second, geneti-
cally predicted drug effects may differ from therapeutic 
practice. Exposure to genetic variants begins at birth and 
continues throughout life. Therefore, our analysis can 
be interpreted to assess the long-term regulatory role of 
drug target proteins. In addition, given that the genetic 
effects are lifelong, our estimates do not reflect the effects 
of taking antidiabetic drugs during a certain period of 
life. Third, our results will be difficult to generalize to 
other ancestral populations because we mainly used the 
genetic summary data restricted to population of Euro-
pean ancestry. Fourth, since antidiabetic drugs contain 
few instrumental variables, further studies should be 

performed in the future if larger blood glucose GWAS 
data are available. Furthermore, randomized controlled 
trials of antidiabetic drugs and ischemic stroke risk war-
rant further implementation.

Conclusions
In conclusion, our study supported genetic variants of 
sulfonylureas targets were associated with a lower risk 
of ischemic stroke. Due to the high incidence of stroke 
and the widespread use of antidaibetic drugs in dia-
betic patients, it is important to determine whether the 
use of antidibetic drugs may reduce the risk of stroke 
in addition to their glucose-lowering properties. Our 
results suggested diabetic patients may reduce their 
risk of ischemic stroke by taking sulfonylureas to lower 
blood glucose. Further study focused on elucidating the 
potential mechanisms by which sulfonylureas reduce 
the risk of ischemic stroke is expected. This study also 
demonstrates that the MR design may be a promising 
tool for finding new indications for already approved 
drugs. This approach can be used as a drug screening 
tool to provide initial support for drug development.
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