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Abstract 

Background  Recent research has established the correlation between gut microbiota and periodontitis via oral-gut 
axis. Intestinal dysbiosis may play a pivotal bridging role in extra-oral inflammatory comorbidities caused by periodon-
titis. However, it is unclear whether the link is merely correlative or orchestrated by causative mechanistic interactions. 
This two-sample Mendelian randomization (MR) study was performed to evaluate the potential bidirectional causal 
relationships between gut microbiota and periodontitis.

Materials and Methods  A two-sample MR analysis was performed using summary statistics from genome-wide 
association studies (GWAS) for gut microbiota (n = 18,340) and periodontitis (cases = 12,251; controls = 22,845). The 
inverse-variance weighted (IVW) method was used for the primary analysis, and we employed sensitivity analyses 
to assess the robustness of the main results. The PhenoScanner database was then searched for pleiotropy SNPs asso-
ciated with potential confounders. In order to identify the possibly influential SNPs, we further conducted the leave-
one-out analysis. Finally, a reverse MR analysis was performed to evaluate the possibility of links between periodontitis 
and genetically predicted gut microbiota alternation.

Results  2,699 single nucleotide polymorphisms (SNPs) associated with 196 microbiota genera were selected 
as instrumental variables (IVs). IVW method suggested that order Enterobacteriales (OR: 1.35, 95% CI 1.10–1.66), family 
Bacteroidales S24.7group (OR: 1.22, 95% CI 1.05–1.41), genus Lachnospiraceae UCG008 (OR: 1.16, 95% CI 1.03–1.31), 
genus Prevotella 7 (OR: 1.11, 95% CI 1.01–1.23), and order Pasteurellales (OR: 1.12, 95% CI 1.00–1.26) may be associ-
ated with a higher risk of periodontitis, while genus Ruminiclostridium 6 may be linked to a lower risk (OR: 0.82, 95% CI 
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0.70–0.95). The sensitivity and heterogeneity analyses yielded no indication of horizontal pleiotropy or heterogeneity. 
Only the association between order Enterobacteriales and the likelihood of periodontitis remained consistent across all 
alternative MR approaches. In the reverse MR analysis, four microbiota genera were genetically predicted to be down-
regulated in periodontitis, whereas two were predicted to be up-regulated.

Conclusions  The present MR analysis demonstrated the potential bidirectional causal relationships between gut 
microbiota and periodontitis. Our research provided fresh insights for the prevention and management of periodonti-
tis. Future research is required to support the finding of our current study.

Keywords  Gut microbiota, Periodontitis, Mendelian randomization, Oral-gut axis, Extra-oral inflammatory 
comorbidity, Probiotics

Introduction
Triggered by etiological agents and contributory factors, 
periodontitis is a chronic infectious disease of the peri-
odontal supporting tissues [1]. Severe periodontitis, as 
a major public health issue, threatens thousands of peo-
ple worldwide, imposing a considerable economic and 
health burden on society [2]. Gut microbiota is the larg-
est microbial habitat in the human body, and since it per-
forms crucial metabolic and immunological functions, 
any changes in it may have substantial systemic repercus-
sions [3].

Recent studies have highlighted the ‘‘oral-gut axis’’ in 
the interactions between oral and gut microbiota [4, 5], 
which may be also involved in the crosstalk of periodon-
titis-mediated systemic inflammatory comorbidities [6]. 
Microbial dysregulation and immunological inflamma-
tory responses induced by ‘‘oral-gut axis’’ alterations are 
common manifestations of periodontitis and multiple 
inflammatory comorbidities [7]. Specifically, periodonti-
tis-associated pathobionts may influence the composition 
of intestinal microbiota by continuous saliva swallow-
ing, hence impacting systemic diseases [8, 9]. Systemic 
disease-induced changes in gut microbiota, on the other 
hand, are frequently accompanied by changes in oral 
microbiota and local periodontal lesions via affecting the 
host immune response [10, 11].

Observational studies have revealed a relationship 
between gut microbiota and periodontitis in recent 
years, with modifications in intestine microbiota spe-
cies observed in ligature-induced periodontitis mice and 
periodontitis patients [12, 13]. Besides, by addressing the 
imbalance of oral and gut microbiota, periodontal treat-
ment has been shown to successfully reduce inflamma-
tory symptoms in patients suffering from periodontitis 
and systemic disorders [14]. Some non-surgical perio-
dontal therapy (NSPT) methods, such as oral probiotics, 
have been proposed as adjuncts in subgingival instru-
mentation to adjust the ecology of gut environmental 
niches, in an effort to maintain the intestinal micro-eco-
logical balance and reverse the established dysbiosis [15, 
16]. These preliminary studies revealed the significance 

of gut microbiota in periodontitis, despite the fact that 
there was minimal clinical evidence to support them [17].

Nonetheless, from a medical and therapeutic stand-
point, it is significant to determine whether the link 
between gut microbiota and periodontitis is purely 
correlative or driven by causative mechanistic interac-
tions. Despite extensive research into epidemiology 
and pathophysiology, the causal association between 
gut microbiota and periodontitis remains unclear due 
to reverse causality and other confounding effects [18]. 
Mendelian randomization (MR) leverages the disease-
genotype correlation to simulate the effect of exposure 
factors on disease by introducing genetic variations 
related to exposure factors as instrumental variables 
(IVs) [19]. With advantages of temporal rationality and 
minimization of confounding factors, MR is viewed as a 
complementary strategy to randomized controlled tri-
als [20].

Here, we conducted a two-sample bidirectional MR 
study based on the publicly available genome-wide 
association studies (GWAS) databases to investigate 
the potential causal relationships between gut micro-
biota and periodontitis, providing genetic evidence for 
the significance of intestine flora in periodontitis.

Methods
Study design
In our study, single nucleotide polymorphisms (SNPs) 
from GWAS were selected as genetic IVs. As presented 
in Fig.  1, our two-sample MR study was built upon 
three principal assumptions [21]:

(1)	 Relevance assumption: The IVs had a strong con-
nection to the exposure.

(2)	 Independence assumption: There was no correla-
tion between the IVs and any variables that affected 
both exposure and outcome.

(3)	 Exclusion restriction assumption: The IVs did not 
alter the outcome through any other causal path-
ways other than their effects on the exposure.
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No further ethical approval was required because 
the present study was based on publicly available 
GWAS data. Our study was reported according to the 
“STrengthening the Reporting of OBservational stud-
ies in Epidemiology using Mendelian Randomization 
(STROBE-MR)” checklist [22].

Data source
A meta-analysis of GWAS, which comprised 18,340 indi-
viduals from 24 mixed-descent cohorts, yielded summary 
statistics for human gut microbiota composition [23]. 
After adjusting for age, gender, technical variables, and 
genetic principal components, association estimates for 
211 bacterial taxa were obtained using both genetic and 
gut microbiota data.

Periodontitis summary statistics were derived from 
the Gene-Lifestyle Interactions in Dental Endpoints 

consortium (GLIDE) [24], which included six European 
ancestry cohorts (cases = 12,251; controls = 22,845). 
Among them, three were diagnosed using the Centers 
for Disease Control and Prevention/American Academy 
of Periodontology (CDC/AAP) criterion, two were diag-
nosed through the Community Periodontal Index (CPI), 
and one was participant-reported periodontitis.

Table 1 and Additional file 1: Tables S1, S2 highlight the 
features of GWAS characteristics and included cohorts.

Instrument selection
The gut microbiota was categorized into 5  biological 
groupings after the removal of 15 bacterial taxa with-
out specific name (unknown family or genus). We first 
selected IVs for gut microbiota based on a loose cutoff 
at P < 1 × 10–5 [25, 26]. Independent SNPs (r2 < 0.001, 
distance > 10,000  kb) were preserved after calculating 

Fig. 1  The core design and key assumptions of the present MR study. IVW inverse-variance weighted, the main analysis to investigate 
the association between exposure and outcome, LD linkage disequilibrium, it is used to calculate the correlations between SNPs; MR Mendelian 
randomization, SNP single nucleotide polymorphism, as genetic instrumental variables for the exposure and outcome, MR-PRESSO Mendelian 
randomization pleiotropy RESidual Sum and Outlier, a method for testing and correcting pleiotropic biases in SNPs

Table 1  Description of GWAS information

GWAS genome-wide association study, SNP single nucleotide polymorphism

Traits Year Cohorts Population SNPs PMID

Number Age Decent

Gut microbiota 2021 24 18,340 4–88 Mixed 5,717,754 33462485

Periodontitis 2019 6 35,096 18–93 European 10,800,407 31235808
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the linkage disequilibrium (LD) of related SNPs. Pal-
indromic SNPs, whose alleles consist of a base and its 
complementary base, were also excluded due to their 
confusing targeted alleles. In the reverse MR analy-
sis, independent SNPs with genome-wide significance 
(P < 5 × 10–6 and r2 < 0.001, distance > 10,000  kb) were 
selected as IVs for periodontitis.

The detailed information on the included IVs is sum-
marized in Additional file 1: Table S3.

Statistical analyses
First, R2 was introduced to denote the proportion of 
phenotypic variance interpreted by SNPs (Eq.  1) [27]. 
F-statistics were further calculated cumulatively in order 
to evaluate the strength of IVs (Eq.  2) [28]. The thresh-
old of F-statistic > 10 was considered as strong statistical 
power, indicating the weak instrument bias was unlikely 
to impact the effect estimates of the causal linkages [29].

(Note: n, k, and EAF indicate the sample size, the number 
of IVs used, and effect allele frequency, respectively).

The primary study employed the inverse-variance 
weighted (IVW) approach, which assumed the validity of 
all IVs and combined the effects to produce a weighted 
total effect [30]. To measure the heterogeneity of IVs, 
Cochran’s Q statistics were used. If significant heteroge-
neity was discovered (P < 0.05), the random-effects model 
was applied. Otherwise, the fixed-effects model was 
applied (P > 0.05) [31]. We further conducted a series of 
sensitivity analyses to assess the robustness of the results 
from IVW. When the effect of sensitivity analyses was 
identical to that of IVW with p-value < 0.05, the results 
were considered stable. Firstly, the weighted median esti-
mator was used to produce robust causal estimates when 
even up to 50% IVs were invalid [32]. Secondly, under an 
assumption of a linear relationship between exposure 
and outcome, the maximum likelihood-based method 
offered normal bivariate distribution for the estimated 
causal association [33]. Thirdly, to give more robust 
causal conclusions, the MR pleiotropy residual sum and 
outlier (MR-PRESSO) test was used to detect and correct 
outliers with potential horizontal pleiotropy by deleting 
aberrant SNPs [26]. Fourthly, the MR-Egger technique 
included an intercept term in the regression model to 
quantify the directional pleiotropy. An intercept term 
that was considerably different from zero in statistics 
revealed the presence of pleiotropy and a breach of the 
basic MR assumption [34].

(1)R
2
= 2× EAF × (1− EAF)× Beta

2

(2)F − statistic =
n − k − 1

k
×

R
2

1− R2

Moreover, we searched the PhenoScanner database 
for previously published confounders related to included 
SNPs with genome-wide significance (P < 1  × 10−5) to 
explore and minimize interferences from potential con-
founding factors, as well as to ensure the stability of 
the results [35]. The leave-one-out analysis was also 
employed to identify the influential SNPs in the causal 
estimates between significant gut microbiota and peri-
odontitis [36]. Finally, a reverse MR analysis was per-
formed to assess the possibility of reverse causality 
between genetically predicted gut microbiota alternation 
and periodontitis.

P < 0.05 for two-sided was regarded as the threshold of 
statistical significance. Odds ratios (OR) with 95% con-
fidence intervals (CI) were used to describe the effect 
between gut microbiota and periodontitis. All analyses 
were performed using “MendelianRandomization (ver-
sion 0.7.0)”, “MRPRESSO (version 1.0)”, and “TwoSam-
pleMR (version 0.5.7)” packages in R software (version 
4.3.1), as well as Sangerbox [37].

Results
Selection of instrumental variables
Following a variety of quality control procedures, 2699 
SNPs associated with 196 bacterial species were selected 
as IVs. The F-statistics for gut microbiota ranged from 
21.63 to 144.84, with an average of 52.04, all of which 
exceeded the threshold of > 10, indicating that weak 
instrument bias was less likely to occur. It should be 
noted that the more taxonomically distinct microbiota 
genera were picked when two of them shared the same 
SNPs in our study (e.g., we used the order Enterobacteri-
ales other than the family Enterobacteriaceae).

Causal effects of gut microbiota on periodontitis
In the exploration stage, we adopted the IVW method to 
conduct a preliminary investigation (Fig.  2). No signifi-
cant heterogeneity was found through Cochran’ Q tests. 
As a result, we discovered that order Enterobacteriales 
(OR: 1.35, 95% CI 1.09–1.66, P = 0.005), family Bacteroi-
dales S24.7group (OR: 1.22, 95% CI 1.05–1.41, P = 0.008), 
genus Lachnospiraceae UCG008 (OR: 1.16, 95% CI 1.03–
1.31, P = 0.014), genus Prevotella 7 (OR: 1.11, 95% CI 
1.01–1.23, P = 0.032), and order Pasteurellales (OR: 1.12, 
95% CI 1.00–1.26, P = 0.047), were linked to a higher risk 
of periodontitis, while genus Ruminiclostridium 6 was 
linked to a lower risk of periodontitis (OR: 0.82, 95% CI 
0.70–0.95, P = 0.009) (Fig. 3).

In terms of sensitivity analysis, MR-Egger regres-
sion analysis revealed no signs of directional pleiotropy 
(p-value for intercept term > 0.05). In the maximum-like-
lihood method, all microbiota genera remained stable, 
while three of them remained stable in the MR-PRESSO 
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Fig. 2  Results of the primary IVW analysis. A The volcano plot illustrates the link between 196 gut microbiota and periodontitis risk. The X-axis 
represents the beta-value, the Y-axis represents the logarithmic p-value with a base of 10, P < 0.05 is considered as statistically significant. Red 
and green star points represent the risk and protective microbiota genera for periodontitis, respectively. B The lollipop plot further depicts six 
statistically significant gut microbiota genera by p-value rank, the size of the points represents the number of SNPs, and the color of the points 
represents the beta-value. CI confidence interval, IVW inverse-variance weighted, OR odds ratio; SNP single nucleotide polymorphism

Fig. 3  Forest plot of the MR analyses for the associations between gut microbiota genera and risk of periodontitis. CI confidence interval, MR 
Mendelian randomization; OR odds ratio
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test (OR: 1.35, 95% CI 1.13–1.60, P = 0.008 for order 
Enterobacteriales; OR: 0.82, 95% CI 0.71–0.94, P = 0.013 
for genus Ruminiclostridium 6; OR: 1.22, 95% CI 1.07–
1.39, P = 0.016 for family Bacteroidales S24.7group). 
In the weighted-median method, however, only the 
order Enterobacteriales remained stable (OR: 1.35, 95% 
CI 1.03–1.77, P = 0.03) (Fig.  3 and Additional file  1: 
Table S4).

Moreover, based on the search results of PhenoScan-
ner database (Additional file  1: Table  S5), novel SNPs 
accounted for 74% of the IVs in our study. Eight dis-
eases and five traits in the research results were identi-
fied as potential confounding factors. And the primary 

confounders were regarded as physical feature, blood 
routine and cardiovascular disease (Fig.  4). Of note, 
rs2548459 has been linked to dentition defect and eden-
tulism. However, considering the modest connections 
between rs2548459 and periodontitis, this pleiotropy 
should be minimal. After removing these pleiotropic 
SNPs, four microbiota genera still maintained statistically 
significant, validating the results of the present MR study 
(Additional file 2: Fig. S1). Last but not least, the leave-
one-out analysis discovered that there were no influential 
SNPs that were substantially associated with the outcome 
(Additional file 1: Fig. S2).

Fig. 4  Results of sensitivity analyses for potential confounders. A The PhenoScanner database was examined for previously recognized confounders 
associated with SNPs of genome-wide significance (P < 1 × 10 −5), the results demonstrate that 74% of the SNPs are novel in the database. B 
The bar chart displays the types and counts of diseases and traits related with the included SNPs. C The UpSet Venn diagram depicts the link 
between the included SNPs as well as the data sets of diseases and traits. SNP single nucleotide polymorphism
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Causal effects of periodontitis on gut microbiota
In the reverse direction, four SNPs linked to periodon-
titis met the criteria for usage as IVs. There was no evi-
dence of weak instrument bias or heterogeneity statistics 
among the IVs, nor of horizontal pleiotropy between 
IVs and microbiota genera. According to IVW analysis, 
59.2% of the genetically predicted microbiota genera 
showed a down-regulated trend in periodontitis, with 
four microbiota genera demonstrating a statistically sig-
nificant decline (OR: 1.22, 95% CI 1.05–1.41, P = 0.008 for 
genus Oxalobacter; OR: 0.70, 95% CI 0.56–0.88, P = 0.002 
for family Oxalobacteraceae; OR: 0.85, 95% CI 0.77–0.95, 
P = 0.005 for genus Alistipes; and OR: 0.86, 95% CI 0.76–
0.97, P = 0.013 for family Rikenellaceae). Furthermore, 
two microbiota genera, including genus Ruminococ-
caceae UCG013 (OR: 1.14, 95% CI 1.02–1.27, P = 0.024) 
and genus Ruminococcus 1 (OR: 1.12, 95% CI 1.00–1.26, 
P = 0.046), exhibited a statistically significant increase in 
periodontitis (Fig.  5). In sensitivity analysis, four down-
regulated microbiota genera remained stable (Additional 
file 1: Table S6 and Additional file 2: Fig. S3).

Discussion
In the present research, we employed a two-sample MR 
study to explore the causal potential relationship between 
gut microbiota genera and periodontitis. We uncovered 
signs that the gut microbiota genera and periodontitis 
may interact. Specifically, five microbiota genera were 
discovered to be associated with a higher risk of perio-
dontitis, whereas one was discovered to be linked with a 

lower risk. Besides, periodontitis affected the genetically 
predicted composition of gut microbiota genera, with 
statistically significant differences reported in six of these 
genera.

The relationship between gut microbiota and peri-
odontitis has long piqued the interest of researchers 
[38]. Traditional research methods, however, are unable 
to fully explain the complex relationships between gut 
microbiota and periodontitis due to confounding vari-
ables and temporal causal interactions [19]. Exploring 
from the standpoint of host genetic variation becomes an 
attractive and crucial research field [39]. A recent study 
in the TwinsUK registry, for example, confirmed the con-
nections between a collection of putative host genetic 
variants and gut microbial composition by periodontal 
condition [40]. Similar benefits applied to the research of 
MR, the development of MR provides a new paradigm for 
studying causal linkages, which has been widely applied 
in the field of periodontitis (Additional file 1: Table S7).

Notably, the order Enterobacteriales, which remained 
stable among 196 microbiota genera in all sensitivity 
analyses, may play key roles in periodontitis. Previous 
research discovered that Enterobacteriales, as one of the 
most prevalent bacteria in the intestine, can flourish in an 
inflammatory environment due to metabolic alterations 
[41]. As a result, mass proliferation of Enterobacteriales 
may jeopardize colonization resistances mediated by the 
indigenous microbiota, leading to increased inflamma-
tory sensitivity [42]. Consistent with our findings, Kita-
moto observed that Enterobacteriales accumulate in both 

Fig. 5  Results of the reverse MR analysis. A The volcano plot illustrates the effect of periodontitis on genetically predicted composition of 196 gut 
microbiota. The X-axis represents the beta-value, the Y-axis represents the logarithmic p-value with a base of 10, P < 0.05 is considered as statistically 
significant. Red and green triangle points represent the microbial genera up and down regulated by periodontitis, respectively. B The lollipop 
plot further depicts six statistically significant intestinal microbial genera by p-value rank, the size of the points represents the number of SNPs, 
and the color of the points represents the beta-value. IVW inverse-variance weighted, SNP single nucleotide polymorphism
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the oral cavity and the intestine as a result of periodon-
titis [43]. Interestingly, the accumulated Enterobacteri-
ales in the intestine may be translocated and ectopically 
colonized by periodontitis-induced oral microbiota, indi-
cating the interaction and linkage between gut and oral 
microbiota [6].

We also revealed that the gut microbiota Lachnospiraceae 
UCG008, Prevotella 7, Bacteroidales S24.7group, Pasteurel-
lales, and Ruminiclostridium 6 were causally associated with 
periodontitis, shedding light on the role of the gut microbi-
ota in periodontal etiology. Similar to our findings, a study 
discovered Ruminococcaceae and Prevotella in greater abun-
dance in the intestines of periodontitis patients, while Lacto-
bacillales and Prevotella were detected in higher proportions 
in the intestines of gingivitis patients [13]. Prevotella was 
also detected four times more frequently in the subgingival 
microbiome of adults with severe periodontitis than in peri-
odontally healthy people according to a recent research [44]. 
Intriguingly, the microbiota found to be related with perio-
dontitis in our study closely mirrored the microbiome found 
to be associated with anxiety disorders in a research by Wei 
[45], implying that gut microbiota may mediate periodonti-
tis-systemic disease comorbidity.

In the reverse MR, we explored the effect of periodon-
titis on the genetically predicted gut microbiota alter-
nation. Given that the majority of the bacteria in our 
database were intestine-resident, it was not surprising 
that the majority of the microbiota genera in our research 
showed a down-regulated pattern during periodonti-
tis, which may reflect the harm caused by periodontitis 
to the healthy gut microbiota. A clinical study revealed 
that periodontitis patients had a decrease in the α-variety 
of gut microbiota, as seen by a rise in the Firmicutes to 
Bacteroidetes ratio [13]. Similar modifications were 
found in our study with an increase in Firmicutes (genus 
Ruminococcaceae UCG013 and Ruminococcus 1) and a 
decrease in Bacteroidetes (genus Alistipes). We further 
observed changes in genus Oxalobacter, family Oxalo-
bacteraceae, and family Rikenellaceae in an ingenious 
way. Unfortunately, we were unable to find specific peri-
odontal pathogens such as Porphyromonas gingivalis and 
Fusobacterium nucleatum [46] in the database we used, 
undermining the genetic evidence for ectopic coloniza-
tion of periodontal-derived bacteria in the intestine.

Recently, potential mechanisms of intestinal bacte-
ria mediating oral disease and overall health has been 
investigated [47]. On the one hand, ectopic colonization 
of periodontitis-associated pathobionts in the intestine 
induces intestinal inflammation and alters local homeo-
stasis by activating both innate (e.g., macrophages) and 
adaptive (e.g., T helper-17 cells) immunity heterotopically 

via the “oral-gut axis” [6, 7], which was also identified as a 
key link in the extra-oral comorbidity crosstalk, including 
inflammatory bowel disease (IBD) [48], Alzheimer’s dis-
ease (AD) [49], nonalcoholic fatty liver disease (NAFLD) 
[50], colorectal cancer [51], hypertension [4], and arthri-
tis [5]. Changes in the variety and quantity of intestinal 
microbiota induced by systemic disease, on the other 
hand, frequently coexist with extraintestinal symptoms 
in locations such as the oral cavity, which manifested as 
more severe loss of periodontal attachment and alveolar 
bone resorption in people with periodontitis [11]. These 
symptoms were thought to be related to an inflammatory 
sensitive state and an aberrant host immune response 
triggered by a breakdown in gut flora equilibrium [48, 
52]. A recent study observed that trimethylamine-N-
oxide (TMAO) can regulate periodontal immunology 
and inflammation by changing the intestinal milieu, 
which may influence periodontitis development via the 
bidirectional interaction of the “oral-gut axis” [53]. The 
importance of gut microbiota in periodontitis and gen-
eral health indicates that we can explore targets on the 
“oral-gut axis” to manage and intervene in inflamma-
tion disorders by governing intestinal microbiota using 
immunological approaches [7].

Finally, our findings have several clinical implications. 
Brownlie’s study found that probiotics containing lacto-
bacilli acids inhibited the growth of commensal Lach-
nospiraceae and Bacteroidales S24.7group bacteria [54], 
while, in our study, these two microbiota genera were 
identified to be associated with a higher risk of periodon-
titis. We also discovered that order Ruminiclostridium 6, 
a Gram-positive probiotic, may reduce the likelihood of 
periodontitis. The present findings made it reasonable 
to figure out that probiotics featuring specific microbial 
genera (e.g., lactobacill or Ruminiclostridium) may play a 
role in periodontitis. As suggested by a systematic review 
[55], the appropriate use of probiotics as adjuncts to sub-
gingival instrumentation may be beneficial to the man-
agement of periodontitis, as well as to the prevention or 
mitigation of extra-oral inflammatory comorbidities [56]. 
Despite the fact that the European Federation of Peri-
odontology (EFP) has not yet supported this application 
due to a lack of relevant data on its efficacy [57].

However, there were certain limitations in our study 
that should be addressed when interpreting the results. 
First of all, while we strive for uniformity throughout 
population sources, a small part of the gut microbiota 
data was obtained from multiple race sets, which may 
have biased our estimates. Second, due to the limited 
information available in the GWAS database, bacte-
rial taxa were only analyzed at the genus level rather 
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than at more specialized levels (e.g., species or strains). 
Similarly, we only covered periodontitis and were una-
vailable to undertake further subtype analysis (e.g., gin-
givitis or periodontal abscess). Third, several sensitivity 
analyses disputed significant results from the primary 
IVW method. We were unable to entirely rule out inter-
ferences from unobserved pleiotropies despite our best 
efforts to explore and eliminate confounding factors. 
Fourth, we did not locate any representative IVs when 
employed the standard IVs criteria (P < 5 × 10–8), thus we 
used a more flexible threshold during the screening pro-
cess (P < 1 × 10–5 for gut microbiota, P < 5 × 10–6 for peri-
odontitis). Due to the same reasons, we failed to correct 
the results using multiple testing correction. Fifth, the 
conclusions may not be entirely applicable to people of 
non-European ancestry, and the use of summary-level 
statistics may result in the omission of critical informa-
tion. Finally, even though we adhered to the STROBE-
MR statement, not all of its recommendations could be 
met for the restricted availability of information (e.g., we 
were unable to determine whether overlapping individu-
als were enrolled between the exposure and outcome).

Conclusions
The present MR analysis confirmed the bidirectional 
causal relationships between gut microbiota and perio-
dontitis. Our research offered some supports for the pre-
vention and management of periodontitis as well as fresh 
information on the mechanisms underlying periodontal-
systemic comorbidities caused by gut microbiota. Future 
research is required to back up the findings of our cur-
rent study.
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