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Abstract 

Background  Colorectal cancer (CRC) is one of the most common malignant tumors globally, with high morbidity 
and mortality. Endoplasmic reticulum is a major organelle responsible for protein synthesis, processing, and trans-
port. Endoplasmic reticulum stress (ERS) refers to the abnormal accumulation of unfolded and misfolded proteins 
in the endoplasmic reticulum, which are involved in tumorigenesis and cancer immunity. Nevertheless, the clinical 
significance of ERS remains largely unexplored in CRC.

Methods  In present study, we performed an unsupervised clustering to identify two types of ERS-related subtypes 
[ERS clusters, and ERS-related genes (ERSGs) clusters] in multiple large-scale CRC cohorts. Through the utilization 
of machine learning techniques, we have successfully developed an uncomplicated yet robust gene scoring system 
(ERSGs signature). Furthermore, a series of analyses, including GO, KEGG, Tumor Immune Dysfunction and Exclusion 
(TIDE), the Consensus Molecular Subtypes (CMS), were used to explore the underlying biological differences and clini-
cal significance between these groups. And immunohistochemical and bioinformatics analyses were performed 
to explore ZNF703, a gene of ERSGs scoring system.

Results  We observed significant differences in prognosis and tumor immune status between the ERS clusters as well 
as ERSGs clusters. And the ERSGs scoring system was an independent risk factor for overall survival; and exhibited 
distinct tumor immune status in multicenter CRC cohorts. Besides, analyses of TNM stages, CMS groups demonstrated 
that patients in advanced stage and CMS4 had higher ERSGs scores. In addition, the ERSGs scores inversely correlated 
with positive ICB response predictors (such as, CD8A, CD274 (PD-L1), and TIS), and directly correlated with negative 
ICB response predictors (such as, TIDE, T cell Exclusion, COX-IS). Notably, immunohistochemical staining and bioinfor-
matics analyses revealed that ZNF70 correlated with CD3 + and CD8 + T cells infiltration.

Conclusion  Based on large-scale and multicenter transcriptomic data, our study comprehensively revealed 
the essential role of ERS in CRC; and constructed a novel ERSGs scoring system to predict the prognosis of patients 
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and the efficacy of ICB treatment. Furthermore, we identified ZNF703 as a potentially promising target for ICB therapy 
in CRC.

Keywords  Endoplasmic reticulum stress, Tumor immunity, Colorectal cancer, Prognosis, ICB response biomarkers

Introduction
Colorectal cancer (CRC) is one of the most common 
malignant tumors globally, ranking third and second in 
incidence and mortality, respectively [1]. Although pre-
sent therapeutic strategies such as surgery [2], radiother-
apy [3], chemotherapy [4], and immunotherapy [5] have 
greatly improved the prognosis of patients with CRC. 
There is still a proportion of patients who are insensitive 
to these treatment regimens, become resistance at the 
later period of treatment, and even relapse after tumor 
clearance. In-depth researches on the mechanisms affect-
ing CRC progression will help to find new intervention 
targets, which are expected to further improve the prog-
nosis of CRC patients and guide clinical treatment.

Endoplasmic reticulum is a major organelle responsi-
ble for protein synthesis, processing and transport; and 
interacts with other organelles in the cell, such as ribo-
somes and Golgi complex [6], which determines the 
functions, fate and survival of cells. Endoplasmic reticu-
lum stress (ERS) refers to the abnormal accumulation 
of unfolded and misfolded proteins in the endoplasmic 
reticulum under the stimulation of external factors [7]. 
The unfolded protein response (UPR) is then activated 
in an attempt to restore ER homeostasis, which is also 
mediated by three key sensors and their downstream 
signaling pathways, including PERK, IRE1, and ATF6 [8]. 
Scientists have found that ERS is closely related to the 
occurrence and development of many diseases, such as 
cardiovascular diseases [9], liver diseases [10], neurode-
generative diseases [11], metabolic diseases [12]. Addi-
tionally, ERS plays an important role in the development 
of cancers. Studies have shown that hypoxia [13–15], 
nutrient deficiency [16–18], and acidosis [19, 20] in the 
tumor microenvironment (TME) can damage the pro-
tein folding ability of tumor cells and infiltrating immune 
cells, resulting in the accumulation of unfolded and mis-
folded protein, thus inducing ERS [7]. Appropriate UPR 
in tumor cells are closely associated with several onco-
genic drivers. For example, activation of MYC signaling 
pathway also accompany activated UPR in a variety of 
tumors, including lymphoma, neuroblastoma, prostate 
cancer and breast cancer [21–24]. Whereas studies have 
also shown that long-term uncontrolled ERS and UPR in 
tumor cells induce apoptosis and inhibit tumor growth 
[7].

Of note, ERS in the intratumoural lymphocytes 
is closely related to lymphocytes mediated tumor 

suppression and immunotherapy efficacy. For example, 
neutrophils undergoing ERS overexpress low-density 
lipoprotein receptor 1 to acquire immunosuppressive 
properties through converting these cells to polymor-
phonuclear myeloid-derived suppressor cells [25]. The 
IRE1α–XBP1 signaling has been reported to directly 
implicate in the polarization of macrophages, and lead to 
a complex immune dysregulation by modulating IL-6 and 
PD-L1 [26]. TME-enriched cytokines including IL-4, IL-6 
and IL-10 activate IRE1α–XBP1 signaling in macrophages 
facilitating cancer cell invasion [27]. The accumulation 
of reactive oxygen species promotes ERS and sustained 
IRE1α-XBP1 activation in tumor-associated dendritic 
cells, thus inhibiting their ability to present antigens to 
intratumor T cells [28]. Furthermore, reduced expression 
of ATF4 in pretreated tumor biopsy samples is associated 
with improved response and prolonged survival in mela-
noma patients treated with anti-CTLA4 [29]. Increased 
expression of ATF6 in intestinal epithelial cells can 
induce microbial imbalance and innate immune changes, 
thus promoting microbial dependent colorectal tumori-
genesis, and high ATF6 expression is related to reduced 
disease-free survival (DFS) of CRC patients [30]. Further-
more, dehydrodiisoeugenol has been reported to inhibit 
the growth of CRC through ERS-induced autophagy 
pathways [31]. However, the clinical an immune sig-
nificance of ERS in CRC is still not well understood, and 
more research are needed to elucidate the points.

In present study, we performed an unsupervised clus-
tering to identify two types of ERS-related subtypes 
[ERS clusters, and ERS-related genes (ERSGs) clusters]. 
We observed significant differences in prognosis and 
tumor immune status between the ERS clusters as well 
as ERSGs clusters in multiple CRC cohorts. Through the 
utilization of machine learning techniques, we have suc-
cessfully developed an uncomplicated yet robust gene 
scoring system (ERSGs signature). The ERSGs scoring 
system can serve as a viable substitute for the above clus-
tering results. We also observed that the ERSGs scoring 
system exhibited distinct tumor immune profiles and was 
an independent and robust risk factor for overall survival 
(OS) in multicenter CRC cohorts. A series of analyses, 
including Tumor Immune Dysfunction and Exclusion 
(TIDE), the Consensus Molecular Subtypes (CMS), were 
then used to explore the clinical and immune significance 
of ERSGs signature system. Patients in advanced TNM 
stage and CMS4 had higher ERSGs scores. Additionally, 
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the ERSGs scores inversely correlated with positive 
immune checkpoint blockade (ICB) response predic-
tors (such as, CD8A, CD274), and directly correlated 
with negative ICB response predictors (such as, TIDE). 
Furthermore, bioinformatics analyses revealed that Zinc 
finger protein 703 (ZNF703), a gene of ERSGs scoring 
system, correlated with multiple immune indexes. The 
prognostic role of ZNF703 was also verified in multiple 
CRC cohorts. Notably, immumohistochemical staining 
(IHC) of our central cohort demonstrated ZNF703 was 
correlated with CD8 + T cell infiltration, and potentially 
be a promising target for tumor immunity.

Methods
Data source and process
GSE39582, GSE14333, GSE17536, GSE17537, and 
GSE72968 were microarray data of CRC cohorts on the 
GPL570 platform. The CEL format data of these five 
cohorts were downloaded from Gene Expression Omni-
bus (GEO) using the R package GEOquery [32], and 
processed using ReadAffy function in the affy package 
[33]. Normal samples were removed, then 1175 CRC 
samples were integrated as a training set (the combined 
GEO cohort) in this study. Background correction and 
standardization were carried out with robust multiarray 
averaging (RMA), and then the SVA package was used to 
remove batch effect among these datasets [34]. Probes 
corresponding to multiple genes were deleted, and the 
average expression was taken when multiple probes cor-
responded to one gene. GSE3958 with a large sample size 
and complete clinical data was used as the primary inter-
nal validation set. The transcriptome data (fragments per 
kilobase million) and clinical data of the TCGA COAD 
cohort were obtained from the UCSC website as an 
external validation set [35]. Then FPKM was converted to 
transcripts per kilobase million, and further log-2 trans-
formed. The paired samples of GSE44076, GSE32323, 
GSE89076, and GSE113513 cohorts had been retained 
for exploring the gene expression level between tumor 
and normal tissues. The detailed information on these 
cohorts is summarized in Additional file 16: Table S1.

Endoplasmic reticulum stress‑related genes
A total of 878 ERS-related genes were obtained from 
Molecular Signatures Database, and GeneCards database 
as previous studies described [36, 37]. These genes were 
used to performed univariate Cox proportional hazards 
regression in the combined GEO cohort. Finally, 189 
prognostic ERS-related genes were identified and used as 
the input genes of unsupervised clustering. These genes 
were summarized in Additional file 17: Table S2.

Unsupervised clustering
A resampling unsupervised clustering method was 
applied for cluster the combined GEO cohort using R 
package ConsensusClusterPlus based on the input genes 
[38]. For this cluster algorithm, we selected the following 
parameters: 80% item resampling (pItem), 100% gene res-
ampling (pFeature), a maximum evaluated k of 9 (maxK), 
1000 resamplings (reps), and pam clustering algorithm 
(clusterAlg) upon euclidean distances (distance).

Evaluation of the tumor microenvironment immunological 
characteristics
Single-sample gene set enrichment analysis (ssGSEA) 
implemented in R package GSVA [39], and Microen-
vironment Cell Populations-counter (MCP-counter) 
implemented in R package MCPcounter [40] algorithms 
were used to infer the abundance of immune cells infil-
trating in the TME based on the transcriptome data. In 
this study, the combined GEO (1175 tumors) and TCGA 
COAD (471 tumors) cohorts were used for ssGSEA and 
MCP-counter analyses. Additionally, ssGSEA was used to 
calculate adaptive and innate immune scores of patients. 
The parameters of ssGSEA analysis were set as follows: 
method = ’ssgsea’, KCDF = ’Gaussian’. Then, we collected 
122 immunomodulators (Additional file  18: Table  S3), 
including major histocompatibility complex (MHC), 
receptors, chemokines, and immunostimulants; and 
20 inhibitory immune checkpoints (Additional file  19: 
Table S4) with therapeutic potential from previous stud-
ies [41, 42]. Cancer immunity is a reflection of the anti-
cancer immune system response, and involves seven 
steps: release of cancer cell antigens (Step 1), cancer 
antigen presentation (Step 2), anticancer immune prim-
ing and activation (Step3), trafficking of immune cells to 
tumors (Step 4), infiltration of immune cells into tumors 
(Step 5), recognition of cancer cells by T cells (Step 6), 
and killing of cancer cells (Step 7). Successful clearance 
of the cancer depends on each step. The marker genes 
of each step were acquired from the tracking tumor 
immune phenotype website (TIP), and quantified using 
the ssGSEA algorithm to obtain an enrichment score of 
each step [43].

Eleven core biological pathways
Eleven core biological pathways associated with can-
cers were collected from previous study [44], including 
FGFR3 gene signature (FGFR3), CD8 T-effector signa-
ture (CD8 + Teff), antigen processing machinery (APM), 
immune checkpoint signature (ICI), MKI67 and cell cycle 
genes (cell cycle), DNA replication-dependent histones 
(Histones), DNA damage repair genes (DDR), TGF-β 
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receptor and ligand (TGFB), pan-tissue fibroblast TGF-β 
response genes (F-TBRS), angiogenesis signature (Angio), 
epithelial-mesenchymal transition (EMT) markers.

Weighted correlation network analysis
Weighted correlation network analysis (WGCNA) anal-
ysis was used to identify gene modules most associated 
with traits [45]. The ERS clusters 1 and 2 were inputted as 
traits. An appropriate soft threshold β (β = 6 in this study) 
was calculated to meet the criteria for the scale-free net-
work. The correlation between module genes and traits 
was analyzed using the Pearson method.

Functional enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [46] analyses were employed 
to explore the biological functions of the modules in 
WGCNA using the R package clusterprofiler [47]. An 
adjusted P-value of less than 0.05 was regarded as statisti-
cally significant.

Construction and validation of ERSGs scoring system
First, we performed univariate Cox proportional hazards 
regression to identify the prognostic ERSGs genes using 
the survival R package. A total of 419 genes with P-value 
less than 0.01 were considered as the prognostic candi-
dates, and inputted to least absolute shrinkage and selec-
tion operator (LASSO) regression and Random Forest 
algorithms [48]. After 10 cross-validations, we identified 
37 genes using LASSO. And Random Forest algorithm 
identified 43 genes. The 12 common genes in LASSO and 
Random Forest algorithms were applied to multivariate 
Cox proportional hazards regression, which identified 
six genes (CCL22, HOXB8, INHBB, KLK10, ZFP36, and 
ZNF703) with P-value less than 0.05. Then, the six genes 
and corresponding regression coefficients in multivariate 
Cox proportional hazards regression were used to con-
struct the ERSGs scoring system, as follows:

The regression coefficient of the gene was designated (i) 
in the multivariate Cox proportional hazards regression.

Survival analysis
Only GSE39582, GSE17536, GSE17537, and GSE72968 
contained comprehensive overall survival (OS) data 
among the combined GEO cohort (Additional file  20: 
Table S5). A total of 864 samples in the combined GEO 
cohort and 435 samples in the TCGA COAD cohort were 
used for survival analysis (Additional file  20: Table  S5). 
In addition, the recurrence-free survival (RFS) data in 
GSE39582; disease-free survival (DFS) data in GSE17536 

ERSGs score =
∑

i

Coefficient of (i)× Expression of gene (i)

and GSE17537; and disease-specific survival (DSS) data 
in GSE17536 were summarized in Additional file  20: 
Table S5, which were used to validate prognostic power 
of the ERSGs scoring system. The survival time was con-
verted to months format, and samples with survival time 
less than 1 month were excluded during survival analysis. 
According to the optimal cutoff value determined by the 
survminer package, the patients were divided into high 
and low groups. Log-rank test was employed to evaluate 
statistical significance. Kaplan–Meier (KM) plots were 
visualized using the survminer package.

Identification of consensus molecular subtypes
The CMS classification is a widely used classification sys-
tem currently available for CRC, and has strong prognos-
tic implications, including CMS1 (MSI Immune), CMS2 
(Canonical), CMS3 (Metabolic), and CMS4 (Mesenchy-
mal) [49]. Among them, CMS4 characterized by promi-
nent transforming growth factor β (TGF-β) activation, 
stromal invasion, and angiogenesis showed worse OS 
and RFS. In this study, R package CMScaller was used for 
CMS classification in the combat GEO, GSE39582, and 
TCGA COAD cohorts [50].

Analysis of mutation data
The mutation data of TCGA COAD were downloaded 
from the TCGA website and analyzed by the “maftools” 
package [51]. The tumor mutation burden (TMB) was 
calculated using the formula: (total mutation/total cov-
ered bases) × 106.

ICB response prediction
TIDE algorithm was employed to predict ICB response 
based on the gene expressions related to T cell dysfunc-
tion (Dysfunction) and T cell exclusion (Exclusion). The 
lower TIDE score is reportedly associated with a better 
immunotherapy response [52]. Furthermore, the scores 
of TIDE, cancer-associated fibroblasts (CAF), dysfunc-
tion, exclusion, M2 macrophages (M2), and myeloid-
derived suppressor cells (MDSC) were calculated on the 
TIDE website. T cell inflamed score (TIS) that reflects 
the pre-existing anticancer immunity and positively cor-
related with therapeutic effect of ICB is calculated based 
on 18 IFN-γ-responsive genes and their corresponding 
weights (Additional file  21: Table  S6), whose predictive 
power was validated in nine types of cancer, including 
CRC, and gastric cancer [53]. COX-2-associated inflam-
matory signature (COX-IS) negatively associates with 
ICB benefit, and validates in patient-derived tumor frag-
ments from multiple cancer types, such as CRC, mela-
noma, non-small cell lung cancer, and ovarian cancer 
[54]. The COX-IS score was calculated using pro- and 
anti-tumorigenic inflammatory factors (Additional 
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file 22: Table S7). Microsatellite instability (MSI) status is 
another important factor affecting ICB therapy [5], where 
MSI-high (MSI-H) patients are more likely benefit from 
ICB therapy. The MSI statuses of TCGA COAD patients 
were downloaded from the supplements of previous 
studies focusing on MSI detection [55]. There were 72 
patients identified as MSI-H and 355 identified as MSI-L/
MSS in TCGA COAD determined by MSI-PCR (Addi-
tional file 23: Table S8). And MSIsensor-pro [discrimina-
tive microsatellite (DMS)] scores were used as the MSI 
scores in this study (Additional file 23: Table S8).

Cell culture and transfection
Human CRC cell line (HCT-116) was purchased from 
the American Type Culture Collection (ATCC, USA). 
Cells were cultured in RPMI 1640 medium (Gibco, USA) 
supplemented with 10% fetal bovine serum and 1% peni-
cillin–streptomycin. The fetal bovine serum was pro-
cured from Inner Mongolia Opcel Biotechnology Co. 
Ltd (Hohhot, China). And cells were maintained at 37 °C 
in a constant-temperature incubator with a 5% CO2 
atmosphere. HCT116 cells were plated at a density of 
8 × 105 cells/well in six-well plates and transfected with 
ZNF703-overexpressing plasmids (Genechem, Shang-
hai, China) when they reached approximately 70% con-
fluence. For transfection, 2.5  μg of DNA was diluted in 
125  μL of Opti-MEM (Gibco, USA), followed by the 
addition of 4 or 5  μL of Lipo8000 (Beyotime, China). 
The mixture was thoroughly mixed and incubated for 
10 min at room temperature. Subsequently, the transfec-
tion mixture was added to the cells in the six-well plates. 
After 8 h, the supernatants were replaced, and the trans-
fected cells were collected for further experiments 48  h 
post-transfection.

Protein extraction and western blotting
Total proteins were extracted from HCT116 using RIPA 
lysis buffer (Beyotime, China) supplemented with PMSF. 
Protein concentration was quantified using the BCA Pro-
tein Assay Kit (Beyotime, China). SDS polyacrylamide 
gels separated the proteins, which were then transferred 
to PVDF membranes. After blocking, primary antibod-
ies were incubated at 4 °C overnight, followed by second-
ary antibodies labeled with HRP at room temperature for 
2 h. Detection was performed using an ECL kit (Affinity, 
China). Primary antibodies included ZNF703 (Abcam # 
ab137054), PDL1 (Servicebio # GB11339A) and GAPDH 
(Abclonal # AC002).

RNA extraction and quantitative real‑time PCR analysis
Total RNAs were extracted from CRC cell lines using 
TRIzol™ Reagent (Invitrogen, USA). Reverse transcrip-
tion was performed using PrimeScriptTM RT Master 

Mix (Takara, Japan) with 1 μg of total RNAs. Quantita-
tive real-time PCR was conducted on an ABI StepOne™ 
Real-Time PCR System. Each 20  μL reaction was con-
sisted of PowerUp SYBR Master Mix (Applied Biosys-
tems), primers, template cDNA, and ddH2O. The relative 
mRNA abundance was determined using the 2 − ΔΔCt 
method, with ACTB as the internal reference gene. The 
primer sets used were as follows:

Human ZNF703: Forward: 5ʹ-CTA​CCC​GTC​TCA​
GTT​CGT​GC-3ʹ,
Reverse: 5ʹ-CAA​TAG​GGG​TCG​CGG​CAT​AA-3ʹ;
Human ACTB:
Forward: 5ʹ-GAT​TCC​TAT​GTG​GGC​GAC​GA-3ʹ,
Reverse: 5ʹ-AGG​TCT​CAA​ACA​TGA​TCT​GGGT-3ʹ.

Immunohistochemistry staining
For the immunohistochemistry (IHC) staining investi-
gation, a total of 41 CRC tissues and 15 normal tissues 
were meticulously collected from patients who under-
went surgical procedures at the Department of CRC 
Surgery, the Second Affiliated Hospital of Harbin Medi-
cal University (Harbin, China), from December 2022 to 
July 2023. This research was conducted with the ethical 
approval from the Ethics Committee of Harbin Medical 
University (Approval No. YJSKY2022-182), all patients 
signed informed consent. The primary antibodies used in 
the IHC analysis were anti-ZNF703 (abcam, #ab188031, 
diluted 1:200), anti-CD3 (MXB, http://​maxim.​com.​cn, 
#MAB-1031, diluted 1:200), and anti-CD8 (MXB, http://​
maxim.​com.​cn, #MAB-1031, diluted 1:200). Paraffin sec-
tions were subjected to overnight incubation with the 
primary antibodies at 4 °C, followed by subsequent treat-
ment with HRP-conjugated secondary antibodies at 37 °C 
for 60  min after PBS rinse. The tissues were counter-
stained with hematoxylin and underwent DAB treatment 
for 2 min. The IHC results underwent independent anal-
ysis by two proficient pathologists. Regarding tumor tis-
sues, the expression of ZNF703 was evaluated using the 
combined positive score (CPS) derived from IHC. CPS 
was calculated as the number of ZNF703–staining cells 
(tumor cells, lymphocytes, and macrophages) divided by 
the total number of viable tumor cells and multiplied by 
100. The count of CD3 + and CD8 + T cells in proximity 
to ZNF703-staining cells was enumerated at the same 
view by consecutive sample sections.

Single‑cell sequencing analysis workflow
The single-cell transcriptome data for CRC were obtained 
from the GEO platform (project number GSE132465), 
encompassing 23 primary CRC samples and 10 matched 
normal mucosa samples [56]. Following rigorous quality 
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control performed by the original researchers, a total of 
63,689 cells were retained. Subsequently, we employed 
the standard process for dimensionality reduction and 
clustering in Seurat R package [57]. The Harmony algo-
rithm was employed to mitigate batch effects [58]. 
Twenty-tow clusters were identified with the FindClus-
ters function with the clustering resolution set to 0.8. We 
used manual annotation to determine cellular identity of 
each cell cluster based on marker genes from previous 
studies [59, 60]. Finally, cells were classified into 7 clus-
ters: T, B, myeloid, mast, epithelial, endothelial, and mes-
enchymal cells.

Statistical analysis
All analyses were performed in R 4.0.3. The difference 
between the two groups was tested by the Wilcox test. 
The log-rank test and Pearson method were used for KM 
survival and correlation analyses, respectively. Heat maps 
were visualized using the ComplexHeatmap package [61]. 
The ggplot2 package was used to visualize boxplots, scat-
ter plots, and sankey plots. And * represented a P-value 
less than 0.05, ** represented a P-value less than 0.01, 
*** represented a P-value less than 0.001, and **** repre-
sented a P-value less than 0.0001.

Results
Distinct clinical outcomes and unique biological functions 
evidenced in diverse ERS clusters
The flow diagram describes the construction of ERS 
subtypes and the ERSGs score in present study (Fig.  1). 
Based on 189 prognostic ERS genes, unsupervised clus-
tering was applied to 1175 patients with CRC in the com-
bined GEO cohort, and the clustering processes were 
shown in Additional file  1: Fig. S1A–D. When patients 
were divided into two clusters (defined as ERS clusters 
1 and 2, K = 2), the clustering result was the most stable. 
And the PCA plot showed significant differences in gene 
expression profiles between the ERS clusters (Fig.  2a). 
Additionally, patients within ERS cluster 1 exhibited a 
notably superior outcome compared to ERS cluster 2 
(Fig.  2b, log-rank test, P = 0.0012). And we performed 
univariate and multivariate cox regression to test whether 
the ERS cluster was an independent factor. Clinical fac-
tors with P < 0.05 in the univariate cox regression were 
then included in the multivariate cox regression. Results 
showed that the classification of ERS clusters was inde-
pendent from other clinical factors, such as, tumor stage, 
age, gender (Additional file  24: Table  S9, univariate cox 
P < 0.001, multivariate cox P < 0.002). Furthermore, we 
compared the expression levels of 11 critical biological 
signatures associated with tumorigenesis between ERS 
clusters (Fig.  2c). The findings highlighted a significant 
upregulation of Angio markers, and a downregulation 

of cell cycle-associated genes in ERS cluster 2. Addition-
ally, immune-associated signatures, including CD8 + Teff, 
F-TBRS, ICI, and TGF-β, exhibited higher expression 
levels in ERS cluster 2 as compared to ERS cluster1. 
Besides the inhibitory immune checkpoints highlighted 
in the heatmap, most other inhibitory immune check-
points, including CD200, CD80, CD86, and IDO1, were 
also elevated in ERS cluster 2 (Fig. 2d). And all the steps 
of cancer immunity cycles were upregulated in ERS clus-
ter 2 (Fig. 2e). The ssGSEA analysis results showed that 
there were more immune cells infiltrating in the TME in 
ERS cluster 2, including activated B cell, activated CD4 
T cell, macrophage, and neutrophils (Fig. 2f ), which were 
validated by the MCP-counter analysis (Additional file 1: 
Fig. S1E). Consistently, the ssGSEA analysis unveiled a 
heightened activation of both the adaptive immunity and 
innate immunity within ERS cluster 2 (Additional file 1: 
Fig. S1F), indicating distinct immune statuses between 
ERS clusters. Subsequently, we evaluated the association 
between the ERS clusters and CMS classification, and 
found that the proportion of CMS4 patients within the 
ERS cluster 2 was significantly higher than that within 
ERS cluster 1 (Additional file 1: Fig. S1G). CMS4 has been 
reported to represent the mesenchymal subtype charac-
terized by prominent TGF-β activation, stromal invasion, 
and angiogenesis, and displayed worse OS and RFS. To 
validate the robustness of ERS clusters, we also employed 
the same genes to cluster patients within TCGA COAD 
cohort. The clustering results demonstrated that the 
patients could still be divided into two clusters, exhibit-
ing a remarkable concordance with the results obtained 
from the combined GEO cohorts (Additional file 1: Fig. 
S1H, Additional file 2: Fig. S2).

Patients in ERSGs clusters 1 exhibit a better prognosis
To identify key genes between ERS clusters 1 and 2, we 
performed the WGCNA analysis, and used ERS clusters 
1 and 2 as the traits. The processes of WGCNA analy-
sis were shown in Additional file 3: Fig. S3A–E. The soft 
threshold β = 6 meet the criteria for the scale-free net-
work in this study. The modules-traits heatmap showed 
that blue (cor =  − 0.71, P = 2e−200), yellow (cor =  − 0.4, 
P = 4e−47), and green (cor =  − 0.46, P = 1e−60) modules 
displayed high correlations with ERS cluster 1 (Fig.  3a, 
Additional file  3: Fig. S3F–H). Hence, the blue, yellow, 
and green modules were considered as the key mod-
ules. There were respectively 605, 900, and 1089 genes 
in green, yellow, and blue modules (Additional file  25: 
Table  S10), which were considered as ERS clusters-
related genes (ERSGs). Then, GO and KEGG analyses 
were performed to explore the biological functions of 
genes within the key modules. When setting adjusted 
P-value of less than 0.05, GO analysis respectively 
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identified 69, 49, and 107 terms enriched in blue, yellow, 
and green modules (Additional file 26: Table S11). While 
KEGG analysis identified 26, 26, and 53 terms enriched 
in in blue, yellow, and green modules (Additional file 26: 
Table  S11). The top 15 enriched GO and KEGG terms 
were shown in Additional file  4: Fig. S4A, B, including 
TGF-β signaling pathway, TNF signaling pathway, IL-17 
signaling pathway, cytokine-cytokine receptor interac-
tion, and chemokine signaling pathway. Furthermore, 

2594 ERSGs among blue, yellow, and green modules were 
again used as the input genes for unsupervised clustering 
in the combined GEO cohort. The clustering result was 
most stable when patients were divided into two groups, 
which were defined as ERSGs clusters 1 and 2 (Addi-
tional file 5: Fig. S5A–E). PCA plot also revealed signifi-
cant differences between the ERSGs clusters (Fig.  3b). 
And patients in ERSGs cluster 1 exhibited better OS 
(Fig. 3c, log-rank test, P = 0.03). The sankey plot revealed 

Fig. 1  Flow diagram of this study
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that most patients in ERS cluster 1 were distributed in 
ERSGs cluster 1 (Fig.  3d). Consistently, the markers of 
Angio, CD8 + Teff, F-TBRS, ICI, and TGFB were upreg-
ulated, whereas the cell cycle markers were downregu-
lated in ERSGs cluster 2 as compared to ERSGs cluster1 
(Additional file 6: Fig. S6A). Additionally, immune-asso-
ciated analyses also demonstrated that the expression 
of inhibitory immune checkpoints (Fig.  3e), 122 immu-
nomodulators (Additional file 6: Fig. S6B); the abundance 
of immune cells infiltrating in the TME (Fig.  3f MCP-
counter; Additional file 6: Fig. S6C ssGSEA); the enrich-
ment score of adaptive and innate immunity calculated 
by ssGSEA (Fig.  3g), and all the steps of cancer immu-
nity cycles (Fig. 3h) were upregulated in ERSGs cluster 2. 
These results demonstrated the stability of the ERS clus-
ters, which can be validated by the key genes between the 
ERS clusters.

Adverse prognosis associated with elevated ERSGs scores 
across various CRC cohorts
Scoring systems are simple and effective models widely 
applied in clinical practice [62–64]. To further facili-
tate the application of ERS subtypes in CRC, we aimed 
to establish a scoring system based on the 2594 ERSGs 
identified by WGCNA analysis, named ERS clusters-
associated genes (ERSGs) scoring system. First, 2594 
ERSGs were used for univariate Cox regression analysis 
in the combined GEO cohort. With a P-value less than 
0.01, 419 prognostic genes were obtained (Additional 
file  27: Table  S12). Furthermore, Lasso regression and 
Random Forest algorithms were used to select critical 
genes for constructing the scoring system. The process 
of Lasso regression was showed in Additional file 7: Fig. 
S7A, B. A total of 37 and 43 genes were identified by the 
Lasso regression and Random Forest algorithms, respec-
tively (Additional file 27: Table S12). And the 12 common 
genes were subjected to multivariate Cox regression, 
which finally identified a set of six genes (CCL22, 

HOXB8, INHBB, KLK10, ZFP36, and ZNF703). Next, 
the ERSGs score was calculated according to the expres-
sion of the six genes weighted by their regression coef-
ficients in multivariate Cox regression model (Additional 
file  28: Table  S13). All patients were assigned into high 
and low ERSGs score groups based on the optimal cut-
off value determined by the survminer package. Excit-
ingly, OS analysis demonstrated that patients with high 
ERSGs scores exhibited worse prognosis than patients 
with low ERSGs scores (Fig. 4a, log-rank test, P < 0.0001), 
which were also validated in internal validation cohorts, 
including GSE39582, GSE17536, and GSE17537 (Fig. 4a, 
log-rank test, P < 0.0001). In addition, the RFS, DFS and 
DSS in the low ERSGs score group were superior to those 
of the high ERSGs score group (Additional file  7: Fig. 
S7C, GSE39582 RFS, GSE17537 DFS, GSE17536 DFS, 
GSE17536 DSS). GSE39582 was a large size cohort with 
complete clinical information that was used as the pri-
mary internal validation set in the subsequent analysis. 
And patients in advanced stages (stage III&IV) exhibited 
significantly higher ERSGs scores in the combined GEO, 
and GSE39582 cohorts (Fig.  4b, c). Furthermore, the 
CMS classification were inferred in the combined GEO 
and GSE39582 cohorts using the CMScaller package 
(Additional file 29: Table S14). We observed that patients 
in CMS4 had higher ERSGs scores than the other sub-
types (Fig.  4d, e), which were in accordance with the 
indications of the ERSGs scores. Furthermore, multi-
variate Cox regression demonstrated that ERSGs scoring 
system was still a robust predictor for OS after adjusting 
for common clinicopathological parameters, such as age, 
gender, and stage in the combined GEO and GSE39582 
cohort (Fig. 4f, Additional file 7: Fig. S7D). And subgroup 
analysis showed that ERSGs scoring system predicted 
the worse OS within subgroups of age, gender, and stage 
(Fig.  4g, Additional file  7: Fig. S7E all P-value < 0.001). 
Next, to evaluate the prognostic power of the ERSGs 
scoring system, we performed ROC analysis and 

Fig. 2  Clinical outcomes and biological functions between ERS clusters. A The PCA diagram shows the different gene expression patterns 
between ERS clusters 1 and 2. B KM plot shows the OS analysis of ERS clusters 1 and 2 in the combined GEO cohort. The log-rank test was used 
for KM survival analysis. C The heatmap reveals the relationships between ERS clusters and 11 critical biological pathways. Rows of the heat map 
represent gene expression grouped by pathway. Red and blue colors represent high and low expression, respectively. FGFR3 gene signature 
(FGFR3), CD8 T-effector signature (CD8 + Teff ), antigen processing machinery (APM), immune checkpoint signature (ICI), MKI67 and cell cycle 
genes (cell cycle), DNA replication-dependent histones (Histones), DNA damage repair genes (DDR), TGF-β receptor and ligand (TGFB), pan-tissue 
fibroblast TGF-β response genes (F-TBRS), angiogenesis signature (Angio), epithelial-mesenchymal transition (EMT) markers. D The difference 
in mRNA expression of 20 inhibitory immune checkpoints between the ERS clusters. E The boxplot shows the differences in enrichment scores 
of cancer immunity cycles calculated by ssGSEA between ERS clusters. The seven steps include release of cancer cell antigens (Step 1), cancer 
antigen presentation (Step 2), anticancer immune priming and activation (Step3), trafficking of immune cells to tumors (Step 4), infiltration 
of immune cells into tumors (Step 5), recognition of cancer cells by T cells (Step 6), and killing of cancer cells (Step 7). F The distribution of 28 types 
of immune cells infiltration between ERS clusters inferred by ssGSEA analysis. And * represents a P-value less than 0.05, ** represents a P-value 
less than 0.01, *** represents a P-value less than 0.001, and **** represents a P-value less than 0.0001. The difference between the two groups 
was assessed using the Wilcox test

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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observed that 1-, 3-, 5-year AUCs of 0.71, 0.71, and 0.69 
in the combined GEO and GSE39582 cohorts (Fig. 4h, i).

Validating the performance of ERSGs scoring system 
in the TCGA COAD cohort
To further verify the performance of our ERSGs scor-
ing system, the TCGA COAD cohort was used as the 
external validation set. Consistently, patients with high 
ERSGs scores exhibited dramatically worse OS (Fig.  5a, 
log-rank test, P < 0.0001). Multivariate Cox regression 
demonstrated that ERSGs scoring system was still a 
robust, and independent predictor for OS after adjust-
ing for common clinicopathological parameters, such as 
age, gender, and stage (Fig.  5b). And subgroup analysis 
showed that ERSGs scoring system predicted the worse 
OS within subgroups of young, older, male, female, and 
stage III&IV, except stage I&II (Fig.  5c, P-value = 0.027, 
0.029, 0.022, 0.033, and 0.006). Although, no significant 
difference was observed between CMS4 and the other 
subtypes in the ERSGs scores (Additional file 8: Fig. S8A), 
patients in advanced stages (stage III&IV) exhibited sig-
nificantly higher ERSGs scores (Fig. 5d). In addition, we 
observed that the ERSGs scores of patients were signifi-
cantly higher in T3&4, N+, and M0 stages than T1&2, 
N0, and M1, respectively (Fig.  5e–g). The ROC analysis 
showed that 1-, 3-, 5-year AUCs of 0.68, 0.62, and 0.52 in 
the TGCA COAD cohorts (Fig. 5h).

Potential favorable response to ICB in patients with low 
ERSGs scores
To explore the relationships between ERSGs scor-
ing system and tumor immunity, we designed the fol-
lowing analyses in the TCGA COAD cohort. First, 
MCP-counter and ssGSEA analyses showed that the 
abundance of most immune cells infiltrating in the 
TME were elevated in the low ERSGs score group, 
including CD8 T cells, activated CD4 and CD8 T cells, 
and natural killer cells (Fig.  6a, Additional file  8: Fig. 
S8B). Second, most steps of cancer immunity cycles 
(such as, cancer antigen presentation, priming and 
activation, trafficking of immune cells to tumors, and 
killing of cancer cells), as well as adaptive and innate 
immunity were more activated in the low ERSGs score 

groups than in the high ERSGs score group (Fig.  6b, 
Additional file  8: Fig. S8C). Third, patients with low 
ERSGs scores highly expressed most 122 immunomod-
ulators, and inhibitory immune checkpoints, such as, 
CD86, CD80, and TIGIT (Fig. 5c, ICI). These findings 
revealed potential relationships between ERSGs scor-
ing system and tumor immunity.

To analyze whether the ERSGs scoring system was 
associated with ICB therapy, we further explored the 
relationship between ERSGs score and several well-
known ICB response predictors, such as tumor muta-
tion burden (TMB) (45), MSI status (46), PD-L1, CD8A, 
TIDE score, TIS, and COX-IS. No significant differ-
ence was observed between the high and low ERSGs 
score groups in the TMB (Additional file  8: Fig. S8D). 
And the ERSGs scores between MSI-H and MSI-L/
MSS patients were not significant different (Addi-
tional file  9: Fig. S9E). However, TIDE algorithm was 
used to predict ICB response based on transcrip-
tome signatures, and showed that the ERSGs score 
was positively correlated with two immunosuppres-
sive indices: T cell exclusion and MDSC (figure, T cell 
exclusion [R = 0.25, P-value = 9.6e−08], and MDSC 
[R =  − 0.28, P-value = 1.3e−09]). Of note, there was 
a strongly direct correlation between the ERSGs and 
TIDE scores (Fig. 6d, R = 0.15, P-value = 0.0019). Addi-
tionally, it is reported that patients with high expres-
sion of PD-L1 and CD8A are more likely to benefit from 
ICB treatment. We observed that the ERSGs score was 
negatively correlated with the expression levels of PD-
L1 and CD8A (Fig.  6e, R =  − 0.13, P-value = 0.0042; 
R =  − 0.2, P-value = 7.8e−06). And the ERSGs scores 
were inversely and directly correlated with TIS (a posi-
tive ICB response predictor) and COX-IS (a negative 
ICB response predictor) (Fig. 6f ).

Furthermore, the biomarker evaluation module on 
the TIDE website was used to assess the accuracy of the 
ERSGs scoring system as compared to other published 
biomarkers in multiple ICB treatment cohorts. The 
ERSGs scoring system displayed an AUC of more than 
0.5 in 14 out of 16 ICB treatment cohorts when CCL22, 
HOXB8, INHBB, KLK10, ZFP36, and ZNF703 serve as 
input genes (Additional file 9: Fig. S9), demonstrating its 

(See figure on next page.)
Fig. 3  Clinical outcomes and biological functions between ERSGs clusters. A Correlation analysis between module eigengenes and ERS clusters. 
Each row contains the corresponding correlation value and P-value. Red and blue colors represent the positive and negative correlations, 
respectively. B The PCA diagram shows the different gene expression patterns between ERSGs clusters. C KM plot shows the OS analysis 
of ERSGs clusters in the combined GEO cohort. The log-rank test was used for KM survival analysis. D The sankey plot revels the relationships 
between the ERS clusters, and ERSGs clusters. E The differences in mRNA expression of 20 inhibitory immune checkpoints between the ERSGs 
clusters. F The distribution of immune cells infiltrating in the TME inferred by MCP-counter algorithm between ERSGs clusters. G The differences 
of enrichment scores of adaptive and innate immunity between ERSGs clusters inferred by ssGSEA analysis. H Heatmap shows the differences 
in cancer immunity cycles between ERSGs clusters



Page 11 of 22Wang et al. Journal of Translational Medicine          (2023) 21:713 	

robustness as a predictive biomarker [65]. These findings 
indicated that the ERSGs score served as a potential pre-
dictor to reflect wore ICB therapy efficacy.

ZNF703 severs as a promising target for tumor immunity
To further explore whether these biomarker genes 
(CCL22, HOXB8, INHBB, KLK10, ZFP36, and ZNF703) 

Fig. 3  (See legend on previous page.)
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Fig. 4  Clinical significance of ERSGs scoring system. A The OS analysis of ERSGs scores in the combined GEO, GSE39582, GSE17536, and GSE17537 
cohorts. The log-rank test was used for KM survival analysis. B, C The distribution of ERSGs scores in different TNM stages. The statistic differences are 
assessed by the Kruskal test. D, E The distribution of ERSGs scores in different CMS groups. The statistic differences are assessed by the Wilcox test. 
F Multivariable Cox regression analysis of OS in the combined GEO cohort. G Subgroup survival analysis of ERSGs scoring system in different age, 
gender, and TNM stages in the combined GEO cohort. H, I Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in the combined GEO 
and GSE39582 cohorts, respectively
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play a potential role in immune checkpoint therapy, we 
designed the following analyses. First, we analyzed the 
correlation between the biomarker genes and several 
immunological molecules, such as, immune checkpoint 
genes, and cytotoxic genes in TCGA COAD (Fig. 7a, b). 
Results demonstrated that most of the biomarker genes 
significantly correlated with immune checkpoint genes 
(BTLA, CD274, CTLA4, HAVCR2, LAG3, PDCD1, and 
TIGIT) and cytotoxic genes (GZMA, GZMB, GZMK, 

GZMM, IFNG, PRF1, and TNFSF11). Then, the regulator 
prioritization module on TIDE website that prioritizes 
genes with the best potential for developing combina-
tion immunotherapies showed that ZNF703 was the 
most potential target for mechanistic follow-up experi-
ments, whose expression was positively correlated with 
T cell dysfunction phenotypes in all datasets enumer-
ated (Fig.  7c, left panel). We also found that ZNF703 
expression positively correlated with the biomarkers 

Fig. 5  Validation of the clinical significance of ERSGs scoring system in TCGA COAD cohort. A The OS analysis of ERSGs scoring system in the TCGA 
COAD cohort. The log-rank test was used for KM survival analysis. B Multivariable Cox regression analysis of OS in the TCGA COAD cohort. C 
Subgroup survival analysis of ERSGs scoring system in different age, gender, and TNM stages in the TCGA COAD cohort. D–G The distribution 
of ERSGs scores in different TNM, T, N, and M stages in TCGA COAD cohort. The statistic differences in more than two groups are assessed 
by the Kruskal test. The difference between the two groups was assessed using the Wilcox test. H Time-dependent ROC analysis for predicting OS 
at 1, 3, and 5 years in the TCGA COAD cohort
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Fig. 6  Relationships between ERSGs score and ICB response. A The distribution of immune cells infiltrating in the TME inferred by MCP-counter 
algorithm between the high and low ERSGs score groups in TCGA COAD cohort. B The boxplot shows the differences in enrichment scores 
of cancer immunity cycles calculated by ssGSEA between the high and low ERSGs score groups. C Heatmap shows the mRNA expressions 
of 122 immunomodulators between the high and low ERSGs score groups. D The Pearson correlation analysis between ERSGs scores 
and tumor-associated fibroblast (CAF), T cell dysfunction (Dysfunction), T cell exclusion (Exclusion), M2 macrophage (M2), myeloid-derived 
suppressor cell (MDSCs), and TIDE score. E, F The Pearson correlation analysis between ERSGs scores and ICB response predictors, including CD8A, 
PD-L1 (CD274), TIS, and COS-IS.
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that predicted worse ICB response, including TIDE, and 
COX-IS scores (Fig.  7d, e); and negatively correlated 
with the biomarkers that predicted better ICB response, 
including TIS, CD8A, PD-L1, and MSI scores (Fig. 7f–i). 
We then established a HCT cell line with ZNF703 over-
expression. We confirmed the successful transfection 
of ZNF703 through fluorescence, mRNA, and protein 
analyses (Additional file 10: Fig. S10A–C). Furthermore, 
we have also assessed the expression of PD-L1, and the 
results indicate that overexpression of ZNF703 in the 
HCT116 cell line did not lead to significant changes in 
PD-L1 protein expression (Additional file 10: Fig. S10C). 
Additionally, patients in MSI-H group expressed less 
ZNF703 than in MSI-L/MSS (Additional file  10: Fig. 
S10D), and the low ZNF703 expression group had a 
higher proportion of patients with MSI-H (Fig.  7j). The 
analysis results of CCL22, HOXB8, INHBB, KLK10, and 
ZFP36 were inferior to ZNF703 (Additional file  10: Fig. 
S10–Additional file 14: Fig. S14). Next, we analyzed the 
expression levels of the biomarker genes between nor-
mal and tumor tissues, and their prognostic roles. The 
expression values of HOXB8, INHBB, and KLK10 were 
significantly upregulated in tumor tissues, while ZFP36 
were highly expressed in normal tissues, which were vali-
dated in paired tumor and normal tissues (Fig. 7k, S15A-
D: TCGA COAD, GSE32323, GSE44076, GSE89076, 
and GSE113513). KM analysis showed that patients 
with high expression of CCL22 exhibited better OS, and 
patients with high expression of INHBB exhibited worse 
OS (Additional file  15: Fig. S15E–I). Of note, ZNF703 
expression was significantly upregulated in tumor tis-
sues as compared to normal tissues in TCGA COAD 
cohort (Fig.  6k), and verified in GSE32323, GSE44076, 
GSE89076, and GSE113513 (Additional file  15: Fig. 
S15A–D). And KM analysis showed that patients with 
high expression of ZNF703 exhibited better OS (Fig. 7l). 
Based on mRNA analysis, patients with low ZNF703 
expression exhibited poorer survival; however, this sub-
group of patients might potentially display heightened 
sensitivity to ICB therapy. Additionally, we performed 

IHC analysis on tissue sections from 56 CRC patients to 
delve into the relationship between ZNF703 and tumor 
immunity at the protein level. Remarkably, our results 
revealed a significant upregulation of ZNF703 in CRC 
tissues as compared to normal tissues (Fig. 8a). Addition-
ally, ZNF703 was predominantly expressed in epithelial 
cells, consistent with our analysis of single-cell and spatial 
transcriptomic data (Fig. 8b, c). Furthermore, IHC analy-
sis of consecutive sections of CRC tissues demonstrated a 
significant correlation between the number of ZNF703-
positive cells and the infiltration of CD3 + T cells and 
CD8 + T cells (Fig.  8d–f, Additional file  30: Table  S15). 
Collectively, these compelling results underscore the 
substantial impact of tumor cell-expressed ZNF703 on 
tumor immunity.

Discussion
Although ERS plays an important role in various biologi-
cal processes of tumor [66], such as autophagy [67], angi-
ogenesis [68], metastasis [69, 70], the role of ERS in CRC 
and tumor immunity has not been fully elucidated.

In this study, we identified two ERS clusters based on 
our collected ERS genes in CRC (defined as ERS clusters 
1 and 2). Key genes between the ERS clusters, identified 
by WGCNA analysis, identify another two clusters again 
(defined as ERSGs clusters 1 and 2). Significant differ-
ences were found in gene expression patterns, OS, and 
immune status in ERS clusters and ERSGs clusters. Com-
pared with ERS cluster 1 and ERSGs cluster 1, patients 
in ERS cluster 2 and ERSGs cluster 2 exhibited worse 
survival, and active immune status. Additionally, Angio 
markers highly expressed in ERS Cluster 2, which may 
be one of the mechanisms responsible for the poor prog-
nosis and indicated that patients in ERS cluster 2 may be 
more likely to benefit from anti-angiogenic drugs.

Our study demonstrated that the ERSGs scoring system 
is a robust prognostic model. First, KM analysis in mul-
tiple CRC cohorts demonstrated that patients with high 
ERSGs scores exhibited worse OS, RFS, DFS and DSS 
than patients with low ERSGs scores. Second, univariate 

(See figure on next page.)
Fig. 7  Exploring the biological functions of ZNF703. A, B The Pearson correlation between the six biomarker genes in ERSGs scoring system 
and immune checkpoint genes and cytotoxic genes (GZMA, GZMB, GZMK, GZMM, IFNG, PRF1, and TNFSF11) in TCGA COAD. Red and blue colors 
represent the positive and negative correlations, respectively. C The correlation between the six biomarker genes and four immunosuppressive 
indices (columns), including T cell dysfunction score (first column, T dysfunction value in core dataset), association with ICB survival outcome 
(second column, z-score in the Cox-PH regression in immunotherapy), log-fold change (logFC) in CRISPR screens (third column, helping identify 
regulators whose knockout can mediate the efficacy of lymphocyte-mediated tumor killing in cancer models), and T cell exclusion score (the fourth 
column, assessing the gene expression levels in immunosuppressive cell types that drive T cell exclusion). Genes (rows) are ranked by average value 
across four immunosuppressive indices analyzed using the TIDE website. D–I The Pearson correlation between ZNF703 expression and TIDE score, 
COX-IS, TIS, CD8A, PD-L1 (CD274), and MSI score in TCGA COAD cohort. J The stacked histogram shows the distribution of MSI-H and MSI-L/MSS 
patients in the high and low expression of ZNF703 groups. K The mRNA expressions of the six biomarker genes between normal and cancer tissue 
in TCGA COAD cohort. L KM plot shows the OS analysis of the high and low expression of ZNF703 groups in the TCGA COAD cohort.
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and multivariate Cox analyses demonstrated that scoring 
system was an independent risk factor associated with 
OS after adjusting for age, gender, and stage. Third, sub-
group analysis also demonstrated the prognostic value of 
the scoring system in young, old, male, female, and stage 

III&IV in the combined GEO, GSE39582, and TCGA 
COAD cohorts. The prognostic value of the scoring sys-
tem was not significant in the stage I&II in TCGA COAD 
cohort, which may suggest that the scoring system has 
greater prognostic power in advanced (stage III&IV) 

Fig. 7  (See legend on previous page.)
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Fig. 8  Exploring ZNF703 in our IHC cohort. A Representative IHC images of ZNF703 in CRC tissues (41 samples) and normal tissues (15 samples). 
B, C tSNE plots of 63,689 cells from 23 primary CRC samples and 10 matched normal mucosa samples, showing 7 clusters in each plot. Each 
cluster was shown in different color. Expression levels of ZNF703 illustrated in tSNE plot from both normal and tumor tissue in CRC patients. D 
Representative IHC images of ZNF703 CPS, CD3, and CD8 at different levels in the same view by consecutive sample sections. E, F The spearman 
correlation between ZNF703 CPS and the count of CD3 + and CD8 + T cells in proximity to ZNF703-staining cells
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CRC patients. Finally, according to the ROC analyses 
from the combined GEO, GSE39582, and TCGA COAD 
datasets, our model demonstrated promising capabilities 
in prognosticating short-term patient survival, notably 
1-year survival.

Additionally, our study showed that patients with low 
ERSGs score may be more likely to benefit from ICI ther-
apy. According to previous studies [71, 72], we defined 
patients with low ERSGs scores as “hot” tumors charac-
terized by an increased infiltration of CD4 and CD8 T 
cells to the TME, and patients with high ERSGs scores as 
“cold” tumors characterized by the absence or low pres-
ence of lymphocytes in the TME. Studies have shown 
that “hot” tumors are more sensitive to ICB therapy than 
“cold” tumors [71, 72]. Consistently, the ERSGs scores are 
negatively correlated with multiple positive ICB response 
predictors (CD8A, PD-L1, and TIS) [53, 73], and posi-
tively correlated with multiple negative ICB response 
predictors (TIDE, T cell Exclusion, COX-IS) [52, 54, 65]. 
Therefore, we speculate that the prognosis of patients 
with low ERSGs score may improve under ICB therapy.

Of note, we identified ZNF703 as a promising target 
for immunotherapies. At the mRNA level, patients with 
low ZNF703 expression exhibited poorer survival; how-
ever, this subgroup potentially displayed heightened sen-
sitivity to ICB therapy. Zinc finger protein 703 (ZNF703), 
a member of the zinc finger transcription factor Net/
NLZ family, abnormally highly expressed in liver cancer 
[74], ovarian cancer [75], breast cancer [76], and head 
and neck squamous cell carcinoma [77]. The abnormal 
expression of ZNF703 affects the biological behavior 
of tumor cells and the prognosis of patients. And there 
is one study reported that mRNA and protein levels of 
ZNF703 were upregulated in CRC tissues than normal 
mucosal tissues, and patients with high protein levels of 
ZNF703 exhibited poor cancer-specific survival [78]. In 
our investigation, ZNF703 exhibited elevated expression 
levels within tumor tissues, concurrently demonstrating 
a favorable prognostic association at the mRNA level. 
Additionally, ZNF703 CPS showed a positive correlation 
with CD8 + T cell abundance in our IHC cohort, con-
trasting with an inverse correlation at the mRNA level in 
TCGA COAD cohort. The inconsistent effects of ZNF703 
at mRNA and protein levels potentially arise from mRNA 
post-transcriptional modification, ribosomal translation 
efficiency and post-translational modifications of pro-
teins. In the future, elucidating this phenomenon will 
require RNA-seq, ribosome profiling, proteomics analy-
sis, and larger sample sizes to provide comprehensive 
insights.

There are still some inherent limitations in our study. 
Owing to the absence of transcriptome data related to 

ICB therapy in CRC, the discriminative efficacy of the 
ERSGs score and ZNF703 in CRC patients could not be 
substantiated. Nevertheless, we intend to further cor-
roborate their validity once public ICB transcriptome 
data for CRC becomes accessible. And we plan to collect 
CRC tumor tissues and transcriptomic data from patients 
undergoing immunotherapy in a CRC retrospective 
ICB cohort or prospectively in a trial. Through rigorous 
analysis of treatment responses and survival outcomes, 
we aim to comprehensively assess the potential clini-
cal applicability of the scoring system and ZNF703. And 
functional experiments for validation of the ZNF703 as a 
tumor immunity target are very important. One experi-
ment that can be carried out is to knock out/over express 
ZNF703 in a CRC cell line and look at the effect on the 
viability of these modified cells vs control cells when co-
cultured with T-cells.

Conclusions
In conclusion, our study demonstrated that differ-
ent ERS statuses (ERS clusters, and ERSGs clusters) are 
closely related to the prognoses and immune statuses of 
CRC patients. And ERSGs scoring system can serve as 
an effective model to discriminate the outcomes of CRC 
patients. Patients with low ZNF703 mRNA expression 
potentially benefit from ICB therapy. Moreover, we iden-
tified ZNF703 as a promising target for tumor immunity.
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Additional file 1. Fig. S1: Processes of constructing ERS clusters. A–C 
Consensus matrixes of the combined GEO cohort for each k (k = 2–4), 
displaying the clustering stability using 1000 iterations of hierarchical 
clustering. D Empirical cumulative distribution function plot displays 
consensus distributions for each k. When k = 2, the distribution reaches an 
approximate maximum, indicating maximum stability. E The distribution 
of immune cells infiltrating in the TME inferred by MCP-counter algorithm 
between ERS clusters. F Enrichment scores for adaptive and innate immu-
nity between ERS clusters, as deduced through ssGSEA analysis. G, H The 
proportion of different CMS patients in ERS clusters. The statistical differ-
ences between the two groups will be assessed using a chi-square test.

Additional file 2. Fig. S2: Validating ERS Classification Robustness in TCGA 
COAD cohort. A The PCA diagram shows the different gene expression 
patterns between ERS clusters. B KM plot shows the OS analysis of ERS 
clusters. C The heatmap reveals the relationships between ERS clusters 
and 11 critical biological pathways. D The difference in mRNA expression 
of 20 inhibitory immune checkpoints between the ERS clusters. E The 
boxplot shows the differences in enrichment scores of cancer immunity 
cycles calculated by ssGSEA between ERS clusters. F The distribution of 28 
types of immune cells infiltration between ERS clusters inferred by ssGSEA 
analysis.

Additional file 3. Fig. S3: Details of the WGCNA analysis. A, B Analysis 
of the scale-free fit index and the mean connectivity for various soft-
thresholding power values. C Hierarchical clustering dendrograms of 
co-expressed genes in modules. D, E The correlation between modules. 
F–H The correlation between module eigengenes and ERS cluster 1 in 
blue, brown, and green modules.

Additional file 4. Fig. S4: GO and KEGG analyses of key WGCGA modules. 
A, B The top 15 GO and KEGG enrichment terms in blue, yellow, and green 
modules, respectively. An adjusted P-value of less than 0.05 was regarded 
as statistically significant.

Additional file 5. Fig. S5: Details of constructing ERSGs clusters. A–D 
Consensus matrixes in the combined GEO cohort for each k (k = 2–5), 
displaying the clustering stability using 1000 iterations of hierarchical 
clustering. E Empirical cumulative distribution function plot displays 
consensus distributions for each k. When k = 2, the distribution reaches 
an approximate maximum, indicating maximum stability. the distribution 
reaches an approximate maximum, indicating maximum stability.

Additional file 6. Fig. S6: Exploring the biological functions between 
ERSGs clusters. A The heatmap reveals the relationships between ERSGs 
clusters and 11 critical biological pathways. Rows of the heat map repre-
sent gene expression grouped by pathway. Red and blue colors represent 
high and low expression, respectively. B Heatmap shows the mRNA 
expressions of 122 immunomodulators between the ERSGs clusters. C 
The distribution of 28 types of immune cells infiltration between ERSGs 
clusters inferred by ssGSEA analysis.

Additional file 7. Fig. S7: Exploring the clinical role of ERSGs scoring 
system. A, B Details of the Lasso regression in the combined GEO cohort. 
C The survival analysis of ERSGs scores in multiple CRC cohorts. RFS rep-
resents recurrence-free survival, DFS represents disease-free survival, and 
DSS represents disease-specific survival. D Multivariable Cox regression 
analysis of OS in GSE39582 cohort. E Subgroup survival analysis of ERSGs 
scoring system in different age, gender, and TNM stages in GSE39582 
cohort.

Additional file 8. Fig. S8: Exploring the role of ERSGs scoring system in 
TCGA COAD. A The distribution of ERSGs scores in different CMS groups. B 
The distribution of 28 types of immune cells infiltration between the high 
and low ERSGs score groups inferred by ssGSEA analysis. C The differences 
of enrichment scores of adaptive and innate immunity between the high 
and low ERSGs score groups inferred by ssGSEA analysis. D The levels of 
TMB between the high and low ERSGs score groups. E The distribution of 

ERSGs scores between MSI-H and MSI-L/MSS patients. The statistic differ-
ences between two groups are assessed by the Wilcox test.

Additional file 9. Fig. S9: Comparison of the power predicting ICB 
response in ERSGs scoring system and other biomarkers. AUC is used to 
evaluate the predictive performance of the ERSGs scoring system (Cus-
tom) and other biomarkers on ICB response in 16 ICB treatment cohorts 
on the TIDE website.

Additional file 10. Fig. S10: Exploring the biological functions of CCL22. 
A Representative fluorescence images after plasmid transfection for 
24–48 h. B Quantitative real-time PCR analysis was conducted to assess 
the overexpression of ZNF703 at 24–48 h post-plasmid transfection. OE: 
overexpression, NC: normal control, OE-ZNF703-4: cells transfected with 
4 μL Lipo8000, and OE-ZNF703-5: cells transfected with 5 μL Lipo8000. 
Subsequent experiments involved cell transfection using 5 μL Lipo8000. 
C Western blotting was employed to evaluate the efficiency of ZNF703 
overexpression and the expression levels of PDL1. Untreated: untreated 
HCT116 cells. D The expression of ZNF703 between MSI-H and MSI-L/
MSS patients. E–J The Pearson correlation between CCL22 expression 
and TIDE score, COX-IS, TIS, CD8A, PD-L1 (CD274), and MSI score in TCGA 
COAD cohort. K The expression of CCL22 between MSI-H and MSI-L/MSS 
patients. L The stacked histogram shows the distribution of MSI-H and 
MSI-L/MSS patients in the high and low expression of CCL22 groups.

Additional file 11. Fig. S11: Exploring the biological functions of HOXB8 
in ERSGs scoring system. A–F The Pearson correlation between HOXB8 
expression and TIDE score, COX-IS, TIS, CD8A, PD-L1 (CD274), and MSI 
score in TCGA COAD cohort. G The expression of HOXB8 between MSI-H 
and MSI-L/MSS patients. H The stacked histogram shows the distribution 
of MSI-H and MSI-L/MSS patients in the high and low expression of HOXB8 
groups.

Additional file 12. Fig. S12: Exploring the biological functions of INHBB 
in ERSGs scoring system. A–F The Pearson correlation between INHBB 
expression and TIDE score, COX-IS, TIS, CD8A, PD-L1 (CD274), and MSI 
score in TCGA COAD cohort. G The expression of INHBB between MSI-H 
and MSI-L/MSS patients. H The stacked histogram shows the distribution 
of MSI-H and MSI-L/MSS patients in the high and low expression of INHBB 
groups.

Additional file 13. Fig. S13: Exploring the biological functions of KLK10 
in ERSGs scoring system. A–F The Pearson correlation between KLK10 
expression and TIDE score, COX-IS, TIS, CD8A, PD-L1 (CD274), and MSI 
score in TCGA COAD cohort. G The expression of KLK10 between MSI-H 
and MSI-L/MSS patients. H The stacked histogram shows the distribution 
of MSI-H and MSI-L/MSS patients in the high and low expression of KLK10 
groups.

Additional file 14. Fig. S14: Exploring the biological functions of ZFP36 
in ERSGs scoring system. A–F The Pearson correlation between ZFP36 
expression and TIDE score, COX-IS, TIS, CD8A, PD-L1 (CD274), and MSI 
score in TCGA COAD cohort. G The expression of ZFP36 between MSI-H 
and MSI-L/MSS patients. H The stacked histogram shows the distribution 
of MSI-H and MSI-L/MSS patients in the high and low expression of ZFP36 
groups.

Additional file 15. Fig. S15: Expression levels and survival analysis of bio-
marker genes in ERSGs scoring system. A–D The mRNA expressions of the 
six biomarker genes in ERSGs scoring system between normal and cancer 
tissue in GSE32323, GSE44076, GSE89076, and GSE113513 cohorts. E–I 
KM plots show the OS analysis of the high and low expression of CCL22, 
HOXB8, INHBB, KLK10, and ZFP36 groups in the TCGA COAD cohort.

Additional file 16. Table S1: Detail information of public CRC cohorts 
used in this study.

Additional file 17. Table S2: ERS related genes identified in this study.

Additional file 18. Table S3: 122 immune molecules collected from 
previous studies.

Additional file 19. Table S4: 20 inhibitory immune checkpoints.

Additional file 20. Table S5: Survival data used for survival analysis.
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Additional file 21. Table S6: TIS genes.

Additional file 22. Table S7: COX-IS genes.

Additional file 23. Table S8: MSI status of patients in TCGA COAD inferred 
by MSIsensor pro.

Additional file 24. Table S9: Multivariate cox regression of ERS clusters.

Additional file 25. Table S10: WGCNA module genes.

Additional file 26. Table S11: GO and KEGG results of different WGCNA 
modules.

Additional file 27. Table S12: Genes for constructing ERSGs scoring 
system.

Additional file 28. Table S13: Coefficients of genes in ERSGs.

Additional file 29. Table S14: CMS groups inferred by CMScaller.

Additional file 30. Table S15: IHC scores of CRC samples.
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