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Abstract 

Rheumatoid arthritis (RA) is an autoimmune disease that exhibits a high degree of heterogeneity, marked by unpre‑
dictable disease flares and significant variations in the response to available treatments. The lack of optimal strati‑
fication for RA patients may be a contributing factor to the poor efficacy of current treatment options. The objec‑
tive of this study is to elucidate the molecular characteristics of RA through the utilization of mitochondrial genes 
and subsequently construct and authenticate a diagnostic framework for RA. Mitochondrial proteins were obtained 
from the MitoCarta database, and the R package limma was employed to filter for differentially expressed mitochon‑
drial genes (MDEGs). Metascape was utilized to perform enrichment analysis, followed by an unsupervised cluster‑
ing algorithm using the ConsensuClusterPlus package to identify distinct subtypes based on MDEGs. The immune 
microenvironment, biological pathways, and drug response were further explored in these subtypes. Finally, a multi-
biomarker-based diagnostic model was constructed using machine learning algorithms. Utilizing 88 MDEGs present 
in transcript profiles, it was possible to classify RA patients into three distinct subtypes, each characterized by unique 
molecular and cellular signatures. Subtype A exhibited a marked activation of inflammatory cells and pathways, 
while subtype C was characterized by the presence of specific innate lymphocytes. Inflammatory and immune cells 
in subtype B displayed a more modest level of activation (Wilcoxon test P < 0.05). Notably, subtype C demonstrated 
a stronger correlation with a superior response to biologics such as infliximab, anti-TNF, rituximab, and methotrexate/
abatacept (P = 0.001) using the fisher test. Furthermore, the mitochondrial diagnosis SVM model demonstrated a high 
degree of discriminatory ability in distinguishing RA in both training (AUC = 100%) and validation sets (AUC = 80.1%). 
This study presents a pioneering analysis of mitochondrial modifications in RA, offering a novel framework for patient 
stratification and potentially enhancing therapeutic decision-making.
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Introduction
 Rheumatoid arthritis (RA) is a heterogeneous and preva-
lent autoimmune inflammatory arthritis [1], leading to a 
rise in the number of disabled life years attributed to RA 
worldwide. However, these trends exhibit regional and 
national variations. Furthermore, RA is an autoimmune 
disease with an unknown etiology, and past risk factors 
include respiratory exposure, genetics, intestinal health, 
oral health, gender, lifestyle, and habits [2].

Currently, Nonsteroidal anti-inflammatory drugs 
[3], Glucocorticoids [4, 5], and Disease-Modifying 
Anti-Rheumatic Drugs (methotrexate, sulfasalazine, 
minocycline, hydroxychloroquine, and azathioprine) 
are commonly utilized as the primary pharmacologi-
cal interventions for managing patients with RA These 
drugs exert their therapeutic effects through immuno-
suppressive and anti-inflammatory mechanisms [6–9]. 
Despite the wide range of treatment options available 
to RA patients, the current standard treatment regimen 
is associated with a multitude of adverse effects [10]. In 
the realm of research, the utilization of big data has the 
potential to unveil novel (sub-) phenotypes in unsuper-
vised analyses, thereby enhancing precision in medi-
cal interventions through the facilitation of innovative 
targeted therapeutic strategies. Dana E Orange et  al. 
conducted comprehensive analyses of patient samples, 
leading to the identification of three distinct subtypes of 
rheumatoid arthritis, with strong associations observed 
between these subtypes and disease activity [11]. Addi-
tionally, Rodrigo Cánovas et  al. [12] discovered differ-
ent subtypes of juvenile idiopathic arthritis, which has 
significantly contributed to the advancement of our 
understanding of this disease. Therefore, it is essential 
to understand RA subtypes and their molecular charac-
terizations in order to better select patients and develop 
individualized therapy based on phenotypes and molecu-
lar signatures.

The disruption of mitochondrial homeostasis has 
been implicated in the development of RA [13–15]. The 
imbalance of the endostatin environment resulting from 
mitochondrial impairment plays a crucial role in the 
pathology of RA [16]. In the context of RA, METTL3 is 
responsible for mediating inflammatory responses by 
activating the NF-κB pathway and facilitating FLS activa-
tion [17]. The heightened expression of SIRT4 promotes 
the secretion of TNF-a and IL-6, thereby expediting the 
process of bone destruction in individuals with osteoar-
thritis [18, 19]. Moreover, PTEN Methylation has been 
found to promote inflammation and the activation of 
fibroblast-like synoviocytes in Rheumatoid Arthritis [20]. 
Both mitochondrial metabolism and immune-inflamma-
tion are significant pathogeneses of RA. However, their 

interplay in RA remains unexplored and necessitates fur-
ther investigation.

This study employed unsupervised clustering methods 
to identify different subtypes in patients with RA based 
on mitochondrial gene expression profiles from whole 
blood. The subtypes were thoroughly characterized using 
cellular, molecular, and clinical features to gain a deeper 
understanding of the underlying biological mechanisms. 
The identified characteristic genes were then applied to 
independent groups of RA patients to evaluate the thera-
peutic outcomes of conventional triple Infliximab and 
anti-TNF. Additionally, machine learning was utilized to 
develop a diagnostic tool based on the identified features. 
This study aims to provide a reference for clinical preci-
sion treatment and early diagnosis of RA patients.

Materials and methods
Processing of RA gene expression data
The Gene Expression Omnibus (GEO) database fur-
nished microarray gene expression data for rheumatoid 
arthritis samples, with a comprehensive account of the 
study design, data preprocessing, and data interpretation 
for the six microarray datasets (GSE110169, GSE93272, 
GSE58795, GSE15258, GSE37107, and GSE68215 in 
Additional file 1: Table S1). Several biologic agents were 
included, namely: Infliximab (GSE58795), anti-TNF 
(GSE15258), rituximab (GSE37107), methotrexate/
abatacept (GSE68215). Drug information was extracted 
from medical records. Additionally, microarray datasets 
GSE110169 and GSE93272 were segregated into train-
ing and test datasets. To mitigate background noise and 
normalize quantiles for microarray data, we retrieved 
raw files in ‘CEL’ format and employed the Affy and Sim-
pleaffy packages for robust multiarray averaging.

Differentially expressed mitochondrial genes: screening 
and function and pathway enrichment analysis
The present study employed the Mitocarta 3.01 database 
to identify gene sets that are associated with mitochon-
dria, with a specific focus on the 1,136 unique human 
mitochondrial genes [21]. The R package limma was 
utilized to filter differentially expressed genes that are 
linked to mitochondria between samples of individu-
als with RA and healthy control samples. False-positive 
outcomes were corrected using the false-discovery rate 
(FDR). The criteria for identifying Mitochondria-asso-
ciated differentially expressed genes (MDEGs) were an 
adjusted p-value of less than 0.05 and a log fold change 
(logFC) of greater than 0.32. To ascertain the enrichment 
of pathways, a Metascape analysis was executed for GO 
and KEGG pathways, wherein functional pathways with a 
p < 0.05 were deemed significantly enriched [22]. Pearson 
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correlation coefficients were employed to scrutinize gene 
expression correlations.

Clustering of Mitochondria‑related expression‑driven 
subgroups in RA
To gain further insights into molecular subtype hetero-
geneity within MDEGs profiles associated with RA, the 
R package ConsensuClusterPlus was utilized to per-
form hierarchical agglomerative clustering using the 
‘km’ method, which is based on Euclidean distance, 
The parameter settings were as follows: maxK = 6, 
reps = 1000, pItem = 0.8, pFeature = 1, clusterAlg="km”, 
distance="euclidean”. The “km” option performs kmeans 
clustering directly on a data matrix, with items and fea-
tures resampled. This process was repeated 1000 times to 
ensure clustering stability [23]. The optimal cluster allo-
cation was determined through the utilization of a cumu-
lative distribution function (CDF). Principal component 
analysis (PCA) was employed to visualize the differences 
between subtypes. The identification of differentially 
expressed genes (MDEGs) was conducted across the 
three subtypes.

Characterization of RA subtypes based on cellular, 
molecular, and clinical characteristics
The present study assessed immune cell infiltration in 
patients with RA through the utilization of the ‘Xcell’ R 
package, which facilitated the computation of the enrich-
ment of 64 immune genes [24]. Additionally, the immune 
function of three subgroups of participants was deter-
mined via single-sample gene set enrichment analy-
sis (ssGSEA) [25]. Pathways linked to RA were curated 
based on literature references and GSEA outcomes, and 
gene sets were sourced from the KEGG and Reactome 
databases. The Wilcoxon test was employed to estimate 
enrichment scores among three subtypes of cells, and 
statistical significance was determined accordingly.

Diagnostic gene screening and diagnostic model 
construction 
Two distinct approaches, LASSO (Least Absolute Shrink-
age and Selection Operator) and SVM-RFE (Support 
Vector Machine-Recursive Feature Elimination), were 
utilized for screening diagnostic genes [26]. Parameters of 
LASSO were set as follows: family = “binomial”, alpha = 1, 
lambda = NULL. Parameters of SVM were set as follows: 
f functions = rfFuncs, method="repeatedcv”, number = 5, 
repeats = 3, verbose = FALSE, returnResamp="final”, 
allowParallel = TRUE. The identification of biomark-
ers was based on the convergence of the two machine 
learning algorithms. A diagnostic model was devel-
oped through the application of logistic regression 
analysis, support vector machines, and random forest. 

Parameters of three machine learning models were set as 
follows: method="repeatedcv”, number = 10, repeats = 10, 
classProbs = TRUE, summaryFunction = twoClass-
Summary, allowParallel = TRUE, and method="glm”, 
method="svmLinear”, and method=” rf”, metric="ROC”. 
The pROC package was employed to calculate the area 
under the ROC curve (AUC) to assess the predictive effi-
cacy of the identified biomarkers.

Correlation analysis of the identified biomarkers
The CIBERSORT algorithm was utilized to investi-
gate immune-cell infiltration [27], and the correlation 
between biomarkers and immune cells was analyzed.

Statistical analysis
All statistical analyses were conducted using R software 
(version 4.0.3). The Wilcoxon test was employed to com-
pare the differences in pathways between two groups 
(clusterA-clusterB, clusterB-clusterC, clusterA-clusterC) 
using the R package ggpubr. The differences in response 
to treatment between three groups (clusterA, clusterB, 
and clusterC) using the Fisher test. The statistical signifi-
cance was defined as a p-value less than 0.05.

Results
MDEGs acquisition and functional enrichment
To identify the disease-specific differentially expressed 
Mitochondria-related genes in between RA and HC 
groups, the limma package was utilized to filter MDEGs 
between RA and HC groups. In GSE110169, a total of 
118 MDEGs were identified from both RA and HC sam-
ples (Fig. 1A, B). The Spearman correlation analysis was 
employed to investigate the relationship among the top 
30 genes (Fig.  1C). The results indicated that CASP8, 
IMMIT, AHCYL1, SND1, and other genes exhibited pre-
dominantly negative correlations, while LRP32, MRPS33, 
and MRPL1 showed mainly positive correlations. GO 
analysis revealed that these MDEGs were significantly 
enriched in mitochondrial envelopes, mitochondrial 
matrix, and mitochondrion organization (Fig. 1D). Addi-
tionally, KEGG analyses revealed significant enrichment 
in the biosynthesis of cofactors and fatty acid metabolism 
(Fig. 1E). These results suggest a connection between RA 
and mitochondrial metabolism.

Clustering of MitoCarta gene expression‑driven RA 
subgroups
In order to develop a more comprehensive definition 
of Mitochondria-related expression-driven subgroups 
in RA, we conducted 1000 iterations using the ‘Con-
sensusClusterPlus’ R package with the optimal number 
of clusters ranging from k = 2 to 6. Based on the CDF 
values and delta area, we recommend utilizing k = 3 
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clusters to ensure robust clustering results (Fig.  2A–
C). The principal component analyses demonstrated 
clear segregation among the three subgroups of RA 
(Fig.  2D), while heatmaps were employed to visualize 
the differentially expressed genes in the three isoforms 
(Fig.  2E). Subsequently, an investigation of subtypes 
was conducted by selecting the 88 genes that were pre-
sent at the intersection of three subtypes, as depicted 
in Fig. 3A. The utilization of these 88 genes enabled the 
identification of three subtypes of RA patients through 

the same methodology, as illustrated in Fig. 3B and D. 
The PCA analyses demonstrated a clear differentiation 
between the three RA subgroups, as shown in Fig. 3E. 
The MDEGs in the three isoforms were visualized using 
heatmaps, revealing the presence of three distinct clus-
ters of subtypes: Subtype A (n = 11), Subtype B (n = 25), 
and Subtype C (n = 21), as presented in Fig. 3F. Overall, 
these results suggest that stratifying RA patients based 
on the Mitochondria-related genes in peripheral blood 
is effective.

Fig. 1  Identification of differentially expressed mitochondrial genes between patients with RA and healthy controls. A–B The volcano and heatmap 
plot of differentially expressed genes between patients with RA and HCs. C Correlation heatmap for all 30 mitochondrial genes in RA patients. D–E 
GO enrichment and KEGG analyses of 118 differentially expressed mitochondrial genes
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Molecular and cellular characterization of the three 
subtypes
In order to comprehend the molecular attributes and 
physiological roles of the three resilient subtypes, 
we conducted an investigation into their prevalence 
across 64 cell types and immune-related pathways. 
Notably, Subtype A showed inflammatory cell infil-
trates, for example, Basophils, Eosinophils, Mast cells, 
Th1 cells, and Macrophages. Moreover, subtype A is 
primarily enriched in Chemokine signaling pathway, 

JAK stat signaling pathway, mTOR signaling pathway, 
toll-like receptor signaling pathway, cytokine signal-
ing in immune system, and interferon signaling. Thus, 
Subtype A was defined as the immune-inflamed type. 
Subtype C patients had high levels of adaptive immune 
cells such as activated CD4 + memory T cells, acti-
vated CD8 + T cells, and CD2 + T cells. Subtype C was 
significantly enriched in hedgehog signaling pathway, 
interleukin_27 signaling, RIG-I-like receptors recep-
tor signaling pathway, and T cell receptor signaling 

Fig. 2  Consensus clustering of RA training cohort. A The consensus score matrix for RA samples when k = 3. B Consensus clustering cumulative 
distribution function (CDF) for k = 2–6, which can completely describe the probability distribution of a real random variable. C The relative change 
of CDF Delta area curve for k = 2–6. D Principal components analysis for the MDEGs expression profiles showing the stability and reliability 
of the clustering. E The distribution of 118 MDEGs RNA regulators among three clusters

(See figure on next page.)
Fig. 3  Consensus clustering of RA based on 88 intersection genes. A Venn diagram showing the intersection of the MDEGs between three 
subtypes. B The consensus score matrix for RA samples when k = 3. C Consensus clustering cumulative distribution function (CDF) for k = 2–6, which 
can completely describe the probability distribution of a real random variable. D The relative change of CDF Delta area curve for k = 2–6. E Principal 
components analysis for the MDEGs expression profiles showing the stability and reliability of clustering. F The distribution of 88 MDEGs RNA 
regulators among three clusters
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Fig. 3  (See legend on previous page.)
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pathway. An innate lymphocyte-rich phenotype was 
identified in Subtype C. Most inflammatory and 
immune cells showed modest activation of Subtype B. 
Subtype B was enriched in TGF beta signaling path-
way (Figs. 4 and 5). In conclusion, Subtype A exhibited 
a marked activation of inflammatory cells and path-
ways, while subtype C was characterized by the pres-
ence of specific innate lymphocytes. Inflammatory and 
immune cells in subtype B displayed a more modest 
level of activation.

Validation of clustering by external cohort
The confirmation of the robustness of the cluster-
ing outcomes was established through the utilization 
of GSE93272. The patients were classified into three 
subtypes based on the gene expression profiles of 88 
MDEGs, namely Subtype A (n = 34), subtype B (n = 39), 
and subtype C (n = 42) (Additional file 1: Figure S1A–E). 
Our findings were consistent with the enrichment scores 
of RA-related pathways and cell subpopulations. Subtype 
A was characterized by modest activation of inflamma-
tory and immune cells, subtype B was identified as an 

Fig. 4  Immune cell characterization of RA subtypes, *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 5  Pathway characterization of RA subtypes, *p < 0.05; **p < 0.01; ***p 0.001
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immune-inflamed type, and subtype C was described as 
having modest activation of inflammatory and immune 
cells (Additional file 1: Figures S2, S3).

Subtypes in response to treatment
In order to comprehend the impact of biologic treat-
ment on various subtypes of rheumatoid arthritis (RA), 
we analyzed four published datasets of RA patients 
who underwent treatment with Infliximab (GSE58795) 
(p > 0.05), anti-TNF (GSE15258) (p > 0.05), rituxi-
mab (GSE37107) (p > 0.05), methotrexate/abatacept 
(GSE68215) (p = 0.001). Our findings indicate that 

subtype C exhibited the highest response rates to all bio-
logics (as illustrated in Fig.  6). Subtype B demonstrated 
a relatively favorable response. However, due to insuffi-
cient sample size, these differences may not have reached 
statistical significance. Our research suggests that RA can 
be classified into distinct molecular subtypes, which may 
impact drug efficacy. Future clinical use of drugs should 
be considered.

Construction of diagnostic models
To screen the key MDEGs of RA, two algorithms were 
employed to screen potential diagnostic biomarkers, 

Fig. 6  Multiple biologic treatments respond to the RA subtypes. Response: responded to the biologics; non-response: did not respond 
to the biologics. A Response/non-response to Infliximab. B Response/non-response to anti-TNF. C Response/non-response to rituximab. 
D Response/non-response to methotrexate/abatacept
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resulting in the identification of five overlapping 
genes related to diagnosis based on 88 MDEGs, utiliz-
ing LASSO logistic regression and SVM algorithms 
(BCL2A1, MTHFD2, LYRM2, FASTKD3, and ACACA) 
(Fig. 7A–C). The development of a diagnostic model for 
RA involved the use of three machine-learning meth-
ods. The diagnostic efficacy was subsequently validated 
using both training (GSE110169) and testing (GSE93272) 
datasets. The AUCs for RF, SVM, and GL in the train-
ing cohort were 100%, 84.37%, and 84.85%, respectively 
(Fig. 7D). In the testing cohort, the AUCs for RF, SVM, 
and GL were 75.06%, 80.10%, and 76.66%, respectively 
(Fig. 7D). The SVM model exhibited a sensitivity of 0.81 
and a specificity of 0.71, while the GL model demon-
strated a sensitivity of 0.81 and a specificity of 0.68. Simi-
larly, the RF model displayed a sensitivity of 0.77 and a 
specificity of 0.68. Collectively, these models demon-
strated superior predictive performance.

Correlation analysis biomarkers and infiltrating immune 
cells
The correlation between biomarkers and immune cells 
was analyzed. ACACA was significantly positively cor-
related with resting NK cells (P < 0.001), naïve T cells 
CD4 (P = 0.014), memory B cells (P = 0.034), and signifi-
cantly negatively correlated with Neutrophils (P < 0.001) 
(Fig. 8A). BCL2A1 was significantly positively correlated 

with Eosinophils (P < 0.001), resting T cells CD4 memory 
(P = 0.002), gamma delta T-cells (P = 0.031), and signifi-
cantly negatively correlated with Tregs (P < 0.001), mem-
ory B cells (P = 0.009), and M2 Macrophages (P = 0.009) 
(Fig.  8B). FASTKD3 was significantly positively corre-
lated with CD4 memory resting T-cells (P = 0.018), and 
significantly negatively correlated with Tregs (P < 0.001) 
and M2 Macrophages (P = 0.046) (Fig.  8C). LYRM2 
was significantly positively correlated with resting den-
dritic cells (P = 0.024) and CD4 memory resting T-cells 
(P = 0.041), and significantly negatively correlated with 
Tregs (P < 0.001), Neutrophils (P = 0.001), and Mac-
rophages M2 (P = 0.022) (Fig.  8D). MTHFD2 was sig-
nificantly positively correlated with resting dendritic 
cells (P = 0.014), Eosinophils (P = 0.028), and Monocytes 
(P = 0.047), and significantly negatively correlated with 
Tregs (P = 0.002), Neutrophils (P = 0.004), and Mac-
rophages M2 (P = 0.009) (Fig. 8E).

Discussion
This research utilized unsupervised clustering tech-
niques to distinguish three distinct subtypes among 
patients diagnosed with RA by analyzing mitochon-
drial gene expression profiles derived from whole blood. 
Each subtype was linked to unique clinical immune cell 
fractions and immune-related pathways. Notably, sub-
type A, characterized as the immune-inflamed type, 

Fig. 7  Construction of the RA diagnostic model. A–B Feature selection proceeded using LASSO. C Feature selection proceeded using SVM. D ROC 
curve of RF, glm, and SVM in training set. E ROC curve of RF, glm, and SVM in testing set
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displayed a transcriptomic signature in inflammatory 
cells and inflammation and immune-related signaling 
pathways. In contrast, subtype C, identified as the innate 

lymphocyte-rich phenotype, exhibited a high degree of 
enrichment in adaptive immune cells and autoimmune-
related pathways. Significantly, subtype B exhibited a 

Fig. 8  Correlation analysis was shown by spearman correlation analyses between biomarkers and infiltrating immune cells. (A) Correlation 
between ACACA gene and immune cells. (B) Correlation between BCL2A1 gene and immune cells. (C) Correlation between FASTKD3 gene 
and immune cells. (D) Correlation between LYRM2 gene and immune cells. (E) Correlation between MTHFD2 gene and immune cells
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modest activation of inflammatory and immune cells, 
while the three subgroups demonstrated distinct reac-
tions to biologics. A diagnostic model was developed to 
identify RA patients and prevent the onset of RA.

Patients with rheumatoid arthritis exhibit a unique pat-
tern of mitochondrial regulation, and our investigation 
has revealed three distinct patterns of RNA modifica-
tion that are associated with different immune pheno-
types. We have confirmed the stability of these subtypes 
across independent datasets. Subtype C exhibited the 
highest response rates to Infliximab and anti-TNF. Sub-
type C is characterized by pronounced inflammatory 
features, including the activation of CD4 + memory T 
cells, CD8 + T cells, and CD2 + T cells. TNF is a cytokine 
with pleiotropic and proinflammatory properties that is 
primarily produced by activated monocytes and mac-
rophages, and to a lesser extent, by T-lymphocytes [28]. 
The T cell-mediated response is believed to be par-
ticularly crucial in inducing TNF secretion by syno-
vial macrophages [29]. Notably, the normalization of 
T-cell subsets has been observed in rheumatoid arthritis 
patients who have undergone long-term treatment with 
anti-TNF or IL-6R blocker therapies [30–32]. Further-
more, anti-TNF therapy has been shown to promote the 
expansion of regulatory T cells by paradoxically promot-
ing the binding of membrane TNF-TNF-RII in rheu-
matoid arthritis [33]. Subtype C exhibited significant 
enrichment in various signaling pathways, including the 
hedgehog signaling pathway, interleukin_27 signaling, 
RIG-I-like receptors receptor signaling pathway, and T 
cell receptor signaling pathway. The hedgehog signaling 
pathway is a highly conserved pathway that plays a criti-
cal role in embryonic development [34, 35]. The study 
provided evidence that the utilization of chemically mod-
ified siRNA (si-S1A3-Chol) that targets the Hedgehog 
signaling pathway could serve as a promising therapeutic 
approach for RA44 [36]. Furthermore, the administra-
tion of Anti-TNFα treatment was found to reduce the 
elevated levels of serum Indian Hedgehog in individuals 
with ankylosing spondylitis and impact the expression of 
Hedgehog pathway target genes with functional signifi-
cance [37]. Recent research indicates that IL-27 may play 
a role in the pathogenesis of RA through various direct 
and indirect regulatory pathways. Specifically, IL-27 sign-
aling may impact the development of RA by modulating 
CD4 + T cell differentiation, suppressing monocytes/
macrophages and osteoclasts within the joint cavity, dis-
rupting interactions between synovial ectopic lymphoid 
structures (ELS) and Th17 cells, and regulating inflam-
mation mediated by RA synovial fibroblasts (RA-FLS) 
[38, 39]. These findings indicate that the hedgehog signal-
ing pathway and interleukin_27 signaling are significantly 

enriched in the innate lymphocyte-rich subtype, empha-
sizing the superior outcomes of anti-TNF and Infliximab.

Research has indicated that mitochondrial dysfunc-
tion plays a crucial role in the promotion of RA [40, 
41]. Mitochondria are essential organelles that produce 
energy and play a central role in cellular metabolism. 
Mitochondrial activity influences the differentiation, 
activation, and survival of immune and non-immune 
cells, which contribute to the pathogenesis of RA. A 
machine learning diagnostic model was developed 
for patients with RA, which demonstrated favorable 
predictive performance in both the training and vali-
dation datasets. BCL2A1, a member of the BCL-2 fam-
ily, functions as an anti-apoptotic agent by regulating 
the intrinsic pathway of apoptosis through the con-
trol of cytochrome c release from mitochondria [42]. 
MTHFD2, an enzyme responsible for mitochondrial 
NADPH production, is essential for overcoming oxida-
tive stress and maintaining redox homeostasis in tumor 
cells [43]. However, MTHFD2 deficiency can lead to 
mitochondrial dysfunction [44]. Additionally, MTHFD2 
has been found to inhibit PTEN activity, modulate 
macrophage polarization, and alter macrophage-
mediated immune responses [45]. The LYRM-family 
proteins have been found to perform a diverse range 
of crucial functions within the mitochondrion, as evi-
denced by prior research [46–48]. Specifically, LYRM2 
has been shown to play a significant role in the integra-
tion of the N-module into respiratory chain complex I 
[49, 50]. Additionally, FASTKD3 has been identified as 
having two distinct functions: firstly, it modulates the 
stability of mature mitochondrial mRNAs ND2, ND3, 
CYTB, COX2, and ATP8/6; and secondly, it promotes 
COX1 mRNA translation [51]. Furthermore, ACACA, 
which functions as the rate-limiting enzyme of FAS, 
acts as a catalyst for the carboxylation of CO2 and the 
conversion of acetyl-CoA into malonyl-CoA [52]. Nota-
bly, ACACA has been found to suppress prostate can-
cer through the inhibition of mitochondrial potential. 
In summary, these genes are mainly involved in metab-
olism processes and affect disease progression.

This study represents the initial attempt to compre-
hensively examine the correlation between mitochon-
drial genes and rheumatoid arthritis. By identifying 
three unique patterns of mitochondrial gene modifi-
cation, we have gained a deeper understanding of the 
underlying mechanisms. Furthermore, we have con-
structed a diagnostic model that exhibits clinical effi-
cacy, which may prove valuable in future investigations 
of mitochondrial gene modification in RA. Ultimately, 
these findings have the potential to enhance thera-
peutic decision-making and improve the accuracy of 
treatment response prediction. However, it is difficult 
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to refute the fact that this study was subject to certain 
limitations. The study relied on bioinformatics analysis, 
and a number of its findings require validation through 
subsequent experiments and extensive cohorts.
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