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LAD1 promotes malignant progression o

by diminishing ubiquitin-dependent
degradation of vimentin in gastric cancer
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Abstract

Background Ladinin-1 (LAD1), an anchoring filament protein, has been associated with several cancer types, includ-
ing cancers of the colon, lungs, and breast. However, it is still unclear how and why LAD1 causes gastric cancer (GC).

Methods Multiple in vitro and in vivo, functional gains and loss experiments were carried out in the current study
to confirm the function of LAD1. Mass spectrometry was used to find the proteins that interact with LAD1. Immuno-
precipitation analyses revealed the mechanism of LAD1 involved in promoting aggressiveness.

Results The results revealed that the LAD1 was overexpressed in GC tissues, and participants with increased LAD1
expression exhibited poorer disease-free survival (DFS) and overall survival (OS). Functionally, LAD1 promotes cellular
invasion, migration, proliferation, and chemoresistance in vivo and in vitro in the subcutaneous patient-and cell-
derived xenograft (PDX and CDX) tumor models. Mechanistically, LAD1 competitively bound to Vimentin, preventing
it from interacting with the E3 ubiquitin ligase macrophage erythroblast attacher (MAEA), which led to a reduction

in K48-linked ubiquitination of Vimentin and an increase in Vimentin protein levels in GC cells.

Conclusions In conclusion, the current investigation indicated that LAD1 has been predicted as a possible prognos-
tic biomarker and therapeutic target for GC due to its ability to suppress Vimentin—-MAEA interaction.
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Introduction

Gastric cancer (GC) is the fifth most common cancer
in the world and the third main cause of cancer-related
deaths [1]. The prognosis for GC has substantially
improved as a result of the emergence of numerous
therapy options [2, 3], although the principal therapies
are still radical surgery and chemotherapy. Cancer recur-
rence and treatment resistance continue to be among the
leading causes of death in GC patients. Understanding
the mechanism of chemoresistance is critically necessary
to provide novel treatment targets.

As a member of the ankyrin family and a constituent
of the dermal-epidermal junction membrane, LAD1 is a
gene that encodes a collagen-anchored silk protein of the
basal layer [4—7]. It can be found in the cell membrane,
cytoplasm, and cytoskeleton and has been detected
in various tissues of the gastrointestinal tract, kidney,
prostate, placenta, and hematopoietic stem cells [8—10].
LAD1 gene variants have been associated with linear
IgA disease, an autoimmune vesicular disease [11]. It
can form the cytoskeleton of breast cancer by interacting
with actin cross-linking proteins and mediating cancer
cell migration and proliferation via the EGF/ERK path-
way [10]. Furthermore, it is highly expressed in colorec-
tal cancer metastatic tissues, and its expression is closely
associated with prognosis, proliferation, and metastasis
[8]. LAD1 may promote tumor cell malignancy and play
an important role in tumor onset, development, and per-
sistence when present.

Vimentin is a type III intermediate filament protein
that is essential for the epithelial-mesenchymal transition
(EMT). When the expression of Vimentin is increased
and the expression of E-cadherin is decreased in epi-
thelial cells, cells undergo EMT [12]. Vimentin helps
tumor cells break out from carcinoma in situ and invade
blood or lymph arteries, thereby providing them with
the potential for proliferation [13, 14]. Extensive study
has proven an association between vimentin and tumor
invasion and metastasis [15]. Furthermore, research has
shown that tumors acquire drug resistance by acquiring
tumor cell stemness during the EMT process [4, 16, 17].
As a result, Vimentin protein therapy could become a
viable option for the treatment of cancerous growths.

The activity of the ubiquitination system is regulated
by the E3 ubiquitin ligases, which are responsible for the
precise identification of target proteins [18, 19]. A wide
range of developmental abnormalities, malignancies, and
neurological diseases may result from defective ubiquit-
ination, which is frequently caused by mutations in the
genes that make E3 ubiquitin ligases or deubiquitinases
or incorrect expression [20]. Considering that ubiquit-
inates are responsible for cancer, neurological disorders,
and developmental difficulties, regulating their activity
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may provide possibilities for therapy [21]. The E3 ubiqui-
tin ligase MAEA (macrophage erythroblast attacher, E3
Ubiquitin Ligase) functions to suppress cytokine recep-
tor signaling through autophagy and maintain the func-
tion of hematopoietic stem cells. In vivo, studies in mice
have shown that MAEA is produced by macrophages but
not erythroblasts, with the latter assisting to maintain the
erythroblast islands in adult mice’s bone marrow [22].
Therefore, we proposed that MAEA plays a crucial part
in regulating cell stemness. Its importance in malignan-
cies is yet unknown, and further research is needed to
fully understand its function in tumor cell stemness.

In the current work, we explored the relationship
between LAD1 expression and clinicopathological
characteristics as well as overall survival (OS) in GC.
Additionally, we used in vitro analysis to examine its
molecular function in the development of cancer. LAD1
has the potential to be used as a therapeutic target and
prognostic biomarker in GC since it inhibits the interac-
tion between Vimentin and MAEA.

Materials and methods

Patients and tissue samples

We acquired 168 primary cancer tissue samples from Sun
Yat-Sen University, Sixth Affiliated Hospital in Guang-
zhou, China, between December 2007 and March 2012,
for our earlier studies [23—25]. The same results and clin-
icopathological features were obtained when we used
these samples to construct tissue microarrays (TMAs)
for immunohistochemistry (IHC) analysis. To examine
the expression of the LAD1 protein, we also acquired
eight matched sets of fresh GCs and their neighboring
normal tissues.

Immunohistochemistry

IHC staining was processed by the biotin-streptavidin
horseradish peroxidase (HRP) detection system (ZSGB
Bio, China) as described in a previous investigation [23].
Antibodies used in IHC were as followed: Vimentin
(10366-1-AP, Proteintech, China, 400), MAEA (28363-1-
AP, Proteintech, China, 1:400), and LAD1 (16136-1-AP,
Proteintech, China, 1:800).

Cell lines and culture

Similar to our previous study, the Type Culture Col-
lection Cell Bank of the Chinese Academy of Sciences
Committee (Shanghai, China) supplied four cell lines
(HGC27, AGS, MKN45, NUGC3) and one human nor-
mal gastric mucosal cell (GES1). The RPMI 1640 (Corn-
ing, USA) medium was used for the cultivation of all cell
lines. 10% fetal bovine (Gibco, USA) serum was added to
every medium. Humidified air containing 5% CO, was
utilized for growing the cells at 37°C.
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Wound healing, invasion, and migration assay

A total of 4x10* cells were spread in the cell scratch
experiment mold of a 12-well plate. After 12 h of culture,
we removed the mold and added an RPMI-1640 medium
containing 1% FBS. After that, we used Incucyte Zoom to
take pictures of the scratch area every hour to track cell
migration and scratch closure. The migration and inva-
sion assays were carried out following our prior study’s
protocol, whereas the wound healing assay was carried
out in a similar way [23].

Plasmid construction and transfection

The full-length open reading frame (ORF) of LADI1
(NM_005558.4) was used to generate a PCR amplicon,
which was then cloned into the HA-tagged pCDH-CMV-
MCS-EF1-CopGFP-T2A-Puro (PCDH) vector. Using the
same strategy, MAEA (NM_001017405.3) and Vimentin
(NM_003380.5) plasmids were cloned into pCDNA3.1
harboring either an MYC-tag or a Flag-tag. Plasmids of
Ub-K63 and Ub-K48 with an HA-tag were purchased
from Addgene. The shRNA of LAD1 was purchased from
Genepharma (Shanghai, China). LAD]1 target sequences
included: ShRNA-1, 5-GCCTCAGAGAAGACATCTCTA-
3; ShRNA-2, 5-CTTTCGGATGAAACCCAAGAAA-3.
Lentivirus infection was used to generate stable cell lines,
and the transient infection method was the same as in the
previously reported study [23].

RNA extraction and qRT-PCR

RNA extraction was obtained using the kits according
to the instruction (EZB-RN4, EZBioscience, China), and
the RNA was reversed to cDNA by using the kits (EZB-
RT2GQ, EZBioscience, China). The following qRT-PCR
was performed as previously reported [23, 24].

The primers used in the study were as follows: GAPDH,
5-GACAGTCAGCCGCATCTTCTT-3 (forward) and 5-A
ATCCGTTGACTCCGACCTTC-3 (reverse); LAD1, 5-AA
AGCAGGAAAAGCGACCACT-3 (forward) and 5-CGG
AGTTTATTTAGGCGCTCTT-3 (reverse); Vimentin, 5-A
GTCCACTGAGTACCGGAGAC-3 (forward) and 5-CAT
TTCACGCATCTGGCGTTC-3 (reverse); MAEA, 5-GAG
ACTGGACGCTGTGAGAC-3 (forward) and 5-AGGTCC
TTGTACGGGGAGATG-3 (reverse).

Western blot analysis

The protein was extracted using RIPA buffer from
Service-Bio in Wuhan, China, which also contains
phosphatase and protease inhibitors, and the protein
concentration was assessed using a BCA kit from the
same company. The ensuing steps were the same as those
in our earlier investigation. The incubated antibodies
include LAD1 (16136-1-AP, Proteintech, China, 1:1000),
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GAPDH (60004-1-Ig, Proteintech, China, 1:1000),
Vimentin (10366-1-AP, Proteintech, China, 1:1000),
MAEA (28363-1-AP, Proteintech, China, 1:1000), HA-
tag (66006-2-1g, Proteintech, China, 1:1000), Flag (F1804,
Sigma, China, 1:1000), 6xHis (10001-0-AP, Proteintech,
China, 1:1000), and Myc-tag (60003-2-Ig, Proteintech,
China, 1:1000).

Colony growth assay

For 3 days, the medium was changed after 600 cells had
been seeded in a 6-well plate. Cells were seeded at a den-
sity of 2x 10* per well on a 6-well plate, and after 24 h, the
medium was changed with or without Oxaliplatin (OXA,
TargetMol, Shanghai, China). After being cultured for
10-14 days, the cells were fixed in 4% paraformaldehyde
and stained with crystal violet. Images of the cells taken
using a microscope were processed in Image J using an
Olympus camera (Tokyo, Japan). For 3D colony forma-
tion, 2000 single cells were seeded in 200 pL of culture
medium in an ultra-low attachment microplate (7007;
Corning, USA) and cultured for 12 days, with medium
changes occurring every 3 days with or without OXA.
During this time, the tumor spheres were photographed
every 4 h using an Incucyte Zoom, and their volumes
were calculated (Volume =4/3mR3).

Cell proliferation assay

In a 96-well plate, 2x10% cells were seeded, and after
24 h, the medium was changed with or without OXA, the
confluence was photographed using an Incucyte Zoom
every 2 to 4 h, and cell viability was determined using a
cell count kit-8 (CCK8).

Immunofluorescence (IF) assay

The protein was extracted using a low salt lysis buffer
and the cells were lysed and centrifuged at 4°C. The cell
supernatant was incubated with the antibody and beads
(HY-K0202-5mL, MCE, USA) at 4°C overnight. The
remaining steps were reported in our previous study [23,
26]. The incubated antibodies include HA-tag (66006-
2-Ig, Proteintech, China, 1:1000), Flag (F1804, Sigma,
China, 1:1000), 6xHis (10001-0-AP, Proteintech, China,
1:1000), and MYC-tag (60003-2-Ig, Proteintech, China,
1:1000).

Mice experiment

Located at the Experimental Animal Center of the Sixth
Affiliated Hospital at Sun Yat-sen University, the BALB/c
nude mice were acquired from GEMPHARMATECH
(Guangdong, China). Female BALB/c nude mice (n=5; 4
weeks old) had 5x10° cells (MKN45-ShNC/Sh1/Sh2) in
100 ul PBS injected subcutaneously into their left flanks.
Tumor volumes were assessed every three days using
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the formula V=W? L/2. Tumor size was evaluated four
weeks after, by sacrificing the mice.

For the construction of a model of lung metastasis, we
injected 100 pl of PBS containing 5x 10° MKN45-ShNC/
Sh1/Sh2 cells into the tail vein. Before being subjected to
euthanization, mice were kept for a total of 60 days. After
that, their lungs were formalin-fixed, cut into slices, and
screened for metastatic nodules.

NOD-SCID mice were acquired from GEMPHAR-
MATECH (Guangdong, China) and kept in the
Experimental Animal Center of The Sixth Affiliated
Hospital, Sun Yat-sen University to establish GC PDX.
The GC tissues used in this investigation were col-
lected with permission and ethical authorization (SYSU-
IACUC-2,022,051,303) from Sun Yat-sen University. In
brief, 2 mm in diameter diced fresh tumor tissue was
cleansed in PBS containing 1% penicillin-streptomycin
before being subcutaneously implanted into NOD-SCID
mice. Tumor volumes between 500 and 1500 mm3 (PO)
showed successful engraftment; tumors were subse-
quently inserted to create P2-P6 mice for additional
research. The P2 mice were randomly split into four
groups (n=5 per group) and given one of four pharma-
cological treatments: SiNC+PBS, LADI-SiRNA +PBS,
SINC+OXA, or LADI-SiRNA+OXA (i.p. injections
of PBS and oxaliplatin every three days, and a dosage of
5 nmol kgl of siRNA every three days). The siRNA was
provided by Genepharma (Shanghai, China) for use
in vivo. The mice were euthanized, and tumors were
excised, fixed in formalin, and embedded in paraffin for
IHC analysis when the tumor volume reached 1500 mm?
or when the entire period of treatment was complete.

Online databases

Differential expression of LAD1 between GC and normal
tissues was investigated through Oncomine (www.oncom
ine.org) and TIMER2.0 (http://timer.cistrome.org/),
accessed on 12 June 2022.

Statistical analysis

Both GraphPad Prism 7.0 (San Diego, CA, USA) and
IBM SPSS Version 21.0 (IBM, New York, NY, USA) were
employed for analyzing the data. The means and stand-
ard deviations of continuous data were examined for
statistical significance using the student’s t-test. Depend-
ing on the characteristics of the categorical variable, the
Chi-square test or Wilcoxon signed-rank test was used
to determine statistical significance. The log-rank test
has been used for statistical analysis, and the Kaplan-
Meier method for calculating survival was also included.
Using a backward-elimination method, Cox proportional
hazards regression was used in a multivariate study to
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assess the importance of putative prognostic factors for
survival.

Results

The LAD1 expression level was upregulated in GC patients
samples

Data from the online public databases Oncomine and
TIMER?2 showed that LAD1 was upregulated more in GC
than in normal tissues (Fig. 1A, B). The results from west-
ern blotting showed that gastric tissues had higher levels
of LAD1 protein than normal tissues (Fig. 1C).

Through the utilization of IF and IHC tests, the results
suggested that LAD1 was localized in the cytoplasm and
membrane (Fig. 1D, E). These findings revealed that the
expression of LAD1 was upregulated in GC.

Increased LAD1 expression indicated a poor GC prognosis
In contrast to low LADI expression, high LAD1 expres-
sion was associated with metastasis and a shorter OS and
DES (Fig. 2B, C, respectively). According to our research,
high LAD1 expression was also associated with a worse
prognosis in colorectal, liver, esophageal, and pancreatic
malignancies (Additional file 1: Fig. S1). Furthermore,
multivariate analysis revealed that LAD1 expression is an
independent predictor of OS and DEFS (Fig. 2D, E). These
results suggest that LAD1 may play a promoter role in
GC.

LAD1 enhances cell proliferation and chemoresistance

in vitro

Stable cell lines (Fig. 3A) were developed and several
in vitro experiments were carried out to study the role
of LADI1 in gastric carcinogenesis. Our findings dem-
onstrated that overexpression of LAD1 increased the
capacity for colony formation (Fig. 3D) and cellular
proliferation (Fig. 3B), and vice versa (Fig. 3C, E). Our
data showed that overexpression of LAD1 significantly
decreased cell death induced by oxaliplatin (Fig. 3F),
as measured by cell proliferation (Fig. 3H) and colony
formation (Fig. 3J). Contrarily, when oxaliplatin was
used, the knockdown of LAD1 had the opposite result
from the overexpression of LAD1 (Fig. 3F-I). Accord-
ing to these results, LAD1 increases cell proliferation
while lowering oxaliplatin-induced cell death, increasing
chemoresistance.

LAD1 enhances cell invasion and migration in vivo

and in vitro

The prognosis and therapeutic options for GC are
severely constrained by metastasis, which involves both
cell invasion and migration. We investigated the role
of LADI1 in cell migration and invasion using transwell
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Significance: *p <0.05, **p < 0.01, ***p <0.001

assays and wound healing after finding that LAD1 was
significantly linked with GC metastases. Overexpres-
sion of LAD1 strengthens the wound healing ability in
MGC803 and SGC7901 cells (Fig. 4A), and vice versa in
MKN45 and NUGC3 cells (Fig. 4B). Overexpression of
LADI1 consistently increased cell invasion and migra-
tion in MGC803 and SGC7901 cells (Fig. 4C), whereas
it had the reverse effect in MKN45 and NUGC3 cells
(Fig. 4D).

Following that, we established a xenograft tumor
model to investigate the role of LAD1 in tumor growth.
When compared to the control, LAD1 knockdown
results in reduced tumor growth, including weight and
volume (Fig. 4E-G). We additionally developed lung
metastasis via tail injection to test the effect of LADI.

LAD1 knockdown, as expected, may reduce lung
metastases (Fig. 4H, I). These findings imply that LAD1
increases cellular invasion and migration both in vivo
and in vitro.

LAD1 promotes vimentin stabilization by weakening its
ubiquitination

Our results showed that Vimentin and MAEA had sig-
nificant correlations with LAD1 (Fig. 5A), which was
further confirmed by co-immunoprecipitation and co-
staining assays (Fig. 5B, C). We discovered that LAD1
could increase Vimentin protein levels but not mRNA
levels (Fig. 5D), showing that LAD1 regulates Vimentin
post-transcriptionally. Overexpression of LAD1 inhib-
ited Vimentin degradation, but knockdown of LADI1
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increased Vimentin degradation considerably when
treated with cycloheximide (CHX) (Fig. 5C), implying
that LAD1 could prolong Vimentin half-life. Treatment
of cells with the proteasome inhibitor (MG132) for 2 h
increased LAD1-mediated stabilization, and this proce-
dure was carried out to determine whether LAD1 weak-
ens the ubiquitin-proteasome degradation of vimentin
(Fig. 5E, F). Furthermore, we found that the overexpres-
sion of LAD1 could decrease the K48-linked polyubiq-
uitination of Vimentin, resulting in increased Vimentin
protein levels (Fig. 5G). In contrast, the knockdown of
LADI failed to decrease the polyubiquitination of Vimen-
tin (Fig. 5H), indicating that LAD1 competitively binds to
Vimentin, disrupting its interaction with MAEA, an E3
ubiquitin ligase, and resulting in decreased K48-linked
ubiquitination of Vimentin, leading to increased Vimen-
tin protein levels in GC cells.

LAD1 abrogates the Vimentin-MAEA interaction

We investigated the role of the novel E3 ligase, MAEA
[22], in mediating the degradation of Vimentin and
whether LAD1 could abrogate this process in GC. When
treated with CHX, we discovered that MAEA overex-
pression greatly accelerated the degradation of vimen-
tin (Fig. 6A), indicating that MAEA may reduce the
half-life of vimentin. We exposed the cells to MG132
for two hours to examine whether MAEA was a factor
in the ubiquitin-proteasome-mediated degradation of
vimentin. We found that MAEA-mediated stabilization
of Vimentin was weakened by MG132 (Fig. 6A). In a
similar manner to LAD1, we also discovered that MAEA
could lower the protein level of vimentin but not its
mRNA level (Fig. 6B). In the meantime, IF staining fur-
ther supported the co-localization of MAEA and Flag-
Vimentin in the cytoplasm. Additionally, our research
revealed that in MGC803 and MKN45 cells, MAEA
could bind to Vimentin and cause K48-linked Vimentin
polyubiquitination (Fig. 6D). Interestingly, we observed
that LAD1 could dose-dependently decrease MAEA
binding to Vimentin and boost the Vimentin protein
level in both cell lines (Fig. 6E). Conversely, the addi-
tion of MAEA decreased LAD1 binding to Vimentin and

(See figure on next page.)

Page 9 of 15

reduced the Vimentin protein level in a dose-dependent
manner (Fig. 6F). As shown in Fig. 6G, we also discov-
ered that both LAD1 and MAEA bound to the Head-
Rod (HR) domain of Vimentin, suggesting that LAD1
might compete with MAEA for binding to Vimentin and
disrupt the interaction between Vimentin and MAEA.
These findings imply that LAD1 competes with Vimen-
tin for binding, preventing Vimentin from interacting
with its E3 ligase MAEA. As a result, the level of the pro-
tein vimentin increases and K48-linked ubiquitination
decreases.

LAD1 and vimentin were crucial for carcinogenesis in vitro
and in vivo

We discovered that the negative effects of LAD1 knock-
down on cell migration, proliferation, invasion, and
chemoresistance were substantially mitigated by the
overexpression of vimentin (Fig. 7A-E). Importantly,
we evaluated the potential therapeutic impact of LAD1
targeting utilizing intraperitoneal siRNA and oxalipl-
atin injection using two PDX models. The Sil group
had reduced tumor development (weight and size) as
compared to controls, particularly following oxaliplatin
treatment (Fig. 7F, G), showing enhanced sensitivity to
oxaliplatin. Therefore, according to our research, LAD1
regulates the expression of Vimentin to support GC cell
proliferation, migration, invasion, and chemoresistance
(Fig. 8).

Discussion
According to the results of the current investigation,
LAD1 was shown to be strongly expressed in gastric can-
cer and to be significantly correlated with metastasis.
Patients with high LAD1 expression in gastric cancer had
worse prognoses than those with low expression. Addi-
tionally, we discovered that LAD1 can promote chem-
oresistance in gastric cancer in vitro and in vivo, LAD1
targeting can promote chemosensitivity, and LAD1
can stabilize Vimentin by reducing MAEA-mediated
ubiquitination.

The primary type of treatment for advanced GC is
chemotherapy, and the standard first-line chemotherapy

Fig. 5 LAD1 promotes Vimentin stabilization by weakening its ubiquitination. A Proteins immunoprecipitated with HA were separated

by SDS-PAGE from MGC803 cells overexpressing HA-LAD1. Bands close to 50-70 kDa were manually excised, identified by mass spectrometry,
and analyzed using GO Oncology for specific proteins. B Co-IP using antibodies against HA, Flag, and 6xHis revealed the exogenous interaction
between LAD1, Vimentin, and MAEA. C Representative co-staining images of LAD1 and Vimentin in MGC803 and MKN45 cells overexpressing
HA-LAD1. D LAD1 dose-dependently increased Vimentin protein expression without affecting its mRNA expression. E, F Western blotting

of Vimentin levels in GC cells with transfected LAD1 and ShLAD1 with CHX and MG132 treatment. G The levels of Vimentin ubiquitination were
specified via Western blotting in MGC803 and MKN45 cells following transfection with the respective plasmids. H Western blotting of Vimentin
ubiquitination in MKN45 cells following the knockdown of endogenous LAD1. Significance as above
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regimen includes oxaliplatin [27, 28]. Chemotherapy
loses its efficacy as metastases develop and cases develop
resistance to chemotherapy. Depletion of LAD1 prevents
colorectal cancer cells from migrating to the liver in vivo,
and increased LAD1 expression is linked to metastatic
colorectal cancer tissues [8]. LAD1, a novel protein, has
been implicated in the development of cancer. In the
meantime, LAD1 knockdown in an animal model inhib-
ited the expression of genes essential for cell survival,
slowing the growth of mammary xenografts [10]. Despite
its potential use as a therapeutic target and predictive
biomarker in GC, the role of LAD1 in GC carcinogenesis
is unknown. The new protein LAD1 considerably stabi-
lized Vimentin by preventing MAEA-mediated ubiq-
uitination and enhancing cellular chemoresistance,
invasion, migration, and proliferation. We also discov-
ered that high levels of LAD1 expression were associated
with a poor prognosis and metastases in GC.

We analyzed the Oncomine and TCGA data to learn
more about LAD1 in GC. Our results show that the
mRNA level of LAD1 is considerably higher in GC than
in normal tissues. We also found a strong correlation
between LAD1 and metastasis, and that increased LAD1
expression was connected to poor DFS and OS among
individuals with GC. Furthermore, the pan-cancer anal-
ysis revealed that LADI1 is associated with a worse out-
come and accelerates carcinogenesis. Our in vitro and
in vivo studies, which are comparable to those on breast
and colorectal malignancies [8, 10] provide additional
evidence that LAD1 increases cellular invasion and
migration, chemoresistance, tumor growth, and lung
metastasis in GC.

The protein vimentin has been linked to increasing
GC formation and prognosis [14, 29]. Ubiquitination
is the primary mechanism for Vimentin degradation
in tumors [30, 31]. The ability of tumor cells to escape
from neoplasia in situ tissue, infiltrate lymphatic or
blood vessels, and spread to distant sites is assisted by
the upregulation of Vimentin expression, which gives
tumor cells the shape and properties of mesenchymal

(See figure on next page.)

Page 12 of 15

cells. Several investigations have linked vimentin to
tumor invasion and metastasis. Moreover, drug resist-
ance is thought to be acquired by tumors through the
EMT process, according to some investigations [4,
16]. An E3 ligase is an essential enzyme in the ubiqui-
tination protease degradation pathway by interacting
with the target protein. MAEA is a new E3 ligase that
promotes autophagy and the preservation of hemat-
opoietic stem cells [22]. As a result, MAEA is critical
in modulating cell stemness. However, its significance
and function in malignant growths remain mostly
unknown, and more research into its role in tumor cell
stemness is required.

Mass spectrometry was used to learn more about how
LAD1 contributes to carcinogenesis. Surprisingly, we
found that LADI stabilizes vimentin rather than promot-
ing its degradation, in addition to interacting with vimentin
and the MAEA protein. An earlier investigation suggested
that MAEA might be a novel E3 ligase [22]. Accordingly,
we hypothesized that LAD1 served as a molecular bridge
between MAEA and Vimentin during the ubiquitination
proteasome degradation process. We observed that both
LAD1 and MAEA may impact the ubiquitination protea-
some degradation of Vimentin, as was predicted. How-
ever, whereas LAD1 inhibits Vimentin K48 ubiquitination,
MAEA promotes it. Furthermore, LAD1 was discovered
to bind to Vimentin competitively, inhibiting the E3 ligase
MAEA from binding to Vimentin. We observed that
Vimentin's Head-Rod (HR) domain was a binding site for
both LAD1 and MAEA.

In summary, our study first discovered the malignant
tumor-promoting role of LAD1 in gastric cancer and dis-
covered a novel mechanism of LAD1 inhibiting the ubig-
uitination of Vimentin mediated by MAEA. However,
there are still limitations in this study. The relationship
between LAD1 and clinicopathological characteristics, as
well as MAEA and Vimentin in clinical samples, still has
to be further confirmed. However, to confirm the clinical
transformative value of LADI, further PDX samples or the
development of organoid models are still required.

Fig. 7 LAD1 and Vimentin were crucial for carcinogenesis in vivo and in vitro(cells transfected with the indicated plasmids). A Western blotting

of MKN45 cells. B Analysis of colony formation ability in MKN45 cells. C Analysis of cell viability in MKN45 cells. D Quantification of invaded

and migrated cells in MKN45 cells. E Representative images of sphere formation assays in MKN45 cells treated with or without OXA are shown. F-G
Tumor weight of PDX model tumors after treatment with siRNA of LAD1 in vivo. H,  H&E, LAD1, MAEA, and Vimentin staining in the PDX tumor

model mentioned above. Significance as above
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Fig. 8 Molecular mechanism diagram depicting the role of LAD1 in regulating malignant progression of GC (Created using BioRender).

Conclusion

In conclusion, the current investigation showed that LAD1
expression is increased in GC and that this increase is asso-
ciated with clinicopathological traits and the prognosis for
GC. The OS and DFS of patients with high LAD1 expres-
sion were poorer. The process of vimentin competition
and disruption with its E3 ligase MAEA, which is crucial
for GC carcinogenesis, is hypothesized to be facilitated by
LADI. A potential treatment target for GC as well as a pre-
dictive biomarker has been identified by the findings of our
study.
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