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Abstract 

Background  The prevalence of hypertension in Qatar is 33 percent of the adult population. It is postulated 
that the salivary microbiome can regulate blood pressure (BP). However, limited investigations exist to prove this 
hypothesis. Therefore, we examined the difference in the salivary microbiome composition between hypertensive 
and normotensive Qatari subjects.

Methods  A total of 1190 Qatar Genome Project (QGP) participants (Mean age = 43 years) were included in this 
study. BP for all participants was classified into Normal (n = 357), Stage1 (n = 336), and Stage2: (n = 161) according 
to the American Heart Association guidelines. 16S-rRNA libraries were sequenced and analyzed using QIIME-pipeline, 
and PICRUST was used to predict functional metabolic routes. Machine Learning (ML) strategies were applied to iden-
tify salivary microbiome-based predictors of hypertension.

Results  Differential abundant analysis (DAA) revealed that Bacteroides and Atopobium were the significant mem-
bers of the hypertensive groups. Alpha and beta diversity indices indicated dysbiosis between the normotensive 
and hypertensive groups. ML-based prediction models revealed that these markers could predict hypertension 
with an AUC (Area under the curve) of 0.89. Functional predictive analysis disclosed that Cysteine and Methionine 
metabolism and the sulphur metabolic pathways involving the renin-angiotensin system were significantly higher 
in the normotensive group. Therefore, members of Bacteroides and Atopobium can serve as predictors of hyperten-
sion. Likewise, Prevotella, Neisseria, and Haemophilus can be the protectors that regulate BP via nitric acid synthesis 
and regulation of the renin-angiotensin system.

Conclusion  It is one of the first studies to assess salivary microbiome and hypertension as disease models in a large 
cohort of the Qatari population. Further research is needed to confirm these findings and validate the mechanisms 
involved.
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Introduction
Hypertension is one of the risk factors for cardiovascu-
lar disease (CVD), its prevalence has doubled globally in 
the last three decades [1]. According to the World Health 
Organization (WHO), hypertension accounts for 12.8% 
of all deaths [2]. Factors contributing to hypertension 
include sedentary lifestyles, unhealthy diets that are high 
in fat and low in fiber, ethnicity, inappropriate medica-
tion use, and stress [3, 4]. Moreover, hypertension can 
cause damage to the body before symptoms appear, and if 
left untreated, it can cause several health complications, 
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including coronary heart disease, heart failure, stroke, 
dementia, kidney failure, etc. [5–7]. Despite a significant 
progress in the development of antihypertensive medica-
tions, efficient dose regimens, and improvements in life-
style, managing hypertension is still challenging. One out 
of every five hypertensive patients responds to treatment 
while the remaining four develop resistance to the treat-
ment [8].

The STEPs-World-Health-Survey revealed that the 
Qatari population is afflicted by various comorbidities, 
including obesity (28.8%), high cholesterol (24.7%), and 
hypertension (14.4%) [9]. In addition, non-communicable 
diseases are the leading cause of death in Qatar, with a 
hypertension mortality rate of 6.2 per 100,000 males [10, 
11]. Hypertension is diagnosed in approximately 30% of 
patients aged 25 to 65 years at primary healthcare facili-
ties, and the Stepwise survey indicates that women in 
Qatar have higher rates of hypertension compared to 
men [9]. Hence, it is crucial to identify new targets for 
hypertension diagnosis and personalized treatment.

Saliva is a rich source of proteins, hormones, enzymes, 
desquamated epithelial cells, and millions of microbes 
[12, 13]. Although it contains a wealth of resources that 
can be used to discover biomarkers, most of them remain 
untapped. Saliva-based biomarkers are highly accessi-
ble and non-invasive, making them useful for people of 
all ages, including infants and the elderly. On the other 
hand, blood-based biomarkers are invasive and must be 
sampled by medical personnel.

The cost of sequencing has significantly decreased, 
and the quality of sequences has improved due to recent 
advancements [14, 15]. Progress in multi-omics tech-
nologies have enhanced our chances to discover novel 
biomarkers [16–18]. The involvement of the salivary 
microbiome in maintaining blood pressure homeosta-
sis can be used to explore novel biomarker discoveries 
in this field. With more than 700 distinct microorgan-
isms, the salivary microbiome is the second most diverse 
component of the human microbiome following the 
gut. [19]. Previous studies showed that the core salivary 
microbiome of healthy subjects includes Streptococcus, 
Veillonella, Neisseria, and Actinomyces [20, 21]. Our 
previously published studies showed that Bacteroidetes, 
Firmicutes, Actinobacteria, and Proteobacteria were the 
common phyla, Streptococcus, Neisseria, Rothia, Prevo-
tella, Granulicatella, Haemophilus, and Porphyromonas 
were the dominant genera in the Qatari population [22, 
23]. It is worth noting that lifestyle and diet can influence 
the salivary microbiome composition, which can reflect 
the host’s health status. This effect can manifest in oral 
diseases like periodontitis and dental caries, as well as 
systemic diseases such as diabetes, obesity, cancer, and 
autoimmune disorders [24–28].

Several studies have been conducted to explore the role 
of the gut microbiome in hypertension [29–31]. How-
ever, despite the salivary microbiome’s accessibility, there 
is limited research on its involvement in hypertension. 
The study by Bondonno et al. highlighted the importance 
of the salivary microbiome in hypertension by revealing 
a disruption in the nitrite-nitrate cycle following the use 
of antibacterial mouthwash [31]. The study shows that 
both men and women who used antibacterial mouth-
wash experienced an increase in blood pressure due to 
the disruption in the nitric oxide (NO) pathway [31]. In 
addition, a case–control study examining the relation-
ship between salivary microbiome, hypertension, and 
salivary NO revealed that subjects with normal blood 
pressure (BP) had higher NO and more Neisseria sub-
flava than those with hypertension [32]. In a recent study, 
Chen et al. assessed the role of the salivary microbiome 
in the pathogenesis of obstructive sleep apnea-associated 
hypertension (OSA-hypertension) and showed that Hae-
mophilus, Neisseria, Oribacterium, and  Lautropia  were 
more enriched in hypertension patients compared to 
controls [33]. Sohail et al. explored the salivary microbi-
ome diversity changes on a limited sample size (n = 96) of 
hypertensive Qatari subjects and showed that Prevotella 
and Veillonella were significantly higher in the hyperten-
sion groups compared to the control group [34].

In this study, we analyzed the salivary microbiome 
composition of 1190 Qatari participants, randomly 
selected from the Qatar Genome Project (QGP) cohort. 
Through the use of machine learning (ML) models, we 
were able to identify a signature in the salivary microbi-
ome that is associated with elevated blood pressure. This 
research marks a significant advancement in the develop-
ment of novel biomarkers that could be used for the diag-
nosis and treatment of hypertension.

Results
Clinical parameters of the study population
From the QBB cohort [23], we randomly selected a 
total of 1190 Qatari participants. The cohort was clas-
sified into four groups based on their blood pressure: 
Normal BP (n = 336), and three groups for high BP 
as follows: Elevated (n = 357), Stage1 (n = 336), and 
Stage2 (n = 161) (Table  1), as described in the “Mate-
rials and Methods” section. The mean age of the 
study participants was 43  years (Table  1), while the 
normotensive group had a significantly lower aver-
age age (34.39 ± 10.12 years) compared to the Elevated 
(41.63 ± 12.60  years), Stage 1 (46.31 ± 10.27  years), and 
Stage 2 (52.43 ± 10.14  years) groups (Table  1). Moreo-
ver, the BMI, plasma alkaline phosphatase, calcium, 
cholesterol, glucose, HbA1C, insulin, and urea were 
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significantly higher in the hypertensive groups com-
pared to the normal BP group (Table  1). Particularly 
Tukey tests for both Cholesterol and insulin levels were 
performed to observe the significant group with high 
BP in comparison to Normal group (Additional file  2: 
Fig S2). The Tukey test of Cholesterol levels inferred 
that Stage1 group level is significantly higher than nor-
mal group (Additional file  2: Fig S2A). On the other 
hand, the Tukey test of insulin levels confirmed that 
Elevated, Stage 1 and Stage 2 groups are significantly 
higher than normal group (Additional file 2: Fig S2B).

Altered salivary microbiome composition 
and hypertension
The sequencing of the 16S rRNA amplicons resulted in 
approximately 48 million reads (47,967,299) for 1190 
samples. The median read count per sample was 42,373, 
the mean was 40,308, and the range varied between 
100 and 173,507 sequences. After filtering and align-
ment, an average of 40,308 assembled reads per sam-
ple were assigned to 4813 OTUs. OTUs were classified 
using the Greengenes bacteria taxonomy and divided 
into four major phyla: Bacteroidetes, Firmicutes, Actino-
bacteria, and Proteobacteria (Fig.  1). While the overall 

Table 1  Clinical parameters of the study cohort

The parameters mentioned in bold are those significantly elevated in Hypertensive groups (Elevated, Stage 1 and Stage 2) compared to the normotensive group

BMI body mass index
a Kruskal–Wallis test
* Denotes P value < 0.05
** P value < 0.01
*** P- value < 0.001

Normal (n = 336) Elevated (n = 357) Stage1 (n = 336) Stage2 (n = 161) P- value

Age 34.39 ± 10.12 41.63 ± 12.60 46.31 ± 10.27 52.43 ± 10.14 < 0.001***, a

Male 220 207 220 78

BMI (kg/m2) 27.38 ± 5.51 31.79 ± 6.05 31.78 ± 4.92 32.52 ± 5.99 < 0.001***, a

Systolic BP (mm of Hg) 106.20 ± 7.93 123.56 ± 2.81 130.72 ± 5.79 149.77 ± 10.64 < 0.001***, a

Diastolic BP (mm of Hg) 63.86 ± 8.24 70.44 ± 6.89 79.27 ± 8.79 79.96 ± 11.45 < 0.001***, a

Albumin(gm/L) 42.57 ± 3.26 44.46 ± 3.45 44.13 ± 3.27 43.13 ± 3.55 < 0.001***, a

Alkaline Phosphatase (U/L) 70.91 ± 19.69 76.53 ± 23.22 76.46 ± 26.96 78.01 ± 21.58 < 0.001***, a

ALT (GPT) (U/L) 24.72 ± 20.22 27.87 ± 19.49 29.89 ± 20.61 24.6 ± 12.93 < 0.001***, a

AST(GOT)(U/L) 22.46 ± 31.66 20.8 ± 8.53 21.79 ± 12.8 19.64 ± 6.81 < 0.001***, a

Bicarbonate(mmol/L) 24.66 ± 2.62 25.64 ± 2.56 25.79 ± 2.43 25.83 ± 2.35 < 0.001***, a

Calcium (mmol/L) 2.31 ± 0.08 2.3 ± 0.09 2.3 ± 0.1 2.32 ± 0.09 < 0.001***, a

Chloride(mmol/L) 102.8 ± 2.13 101.32 ± 2.5 101.26 ± 2.35 100.94 ± 2.66 < 0.001***, a

Cholesterol (mmol/L) 4.99 ± 0.95 5.13 ± 1.04 5.25 ± 0.93 5.2 ± 1.18 0.002**, a

C-Peptide (ng/mL) 1.91 ± 1.02 2.58 ± 1.56 2.78 ± 1.64 2.88 ± 2.26 < 0.001***, a

Creatinine (umol/L) 69.33 ± 11.62 69.24 ± 14.92 70.75 ± 14.47 70.81 ± 20.97 0.315a

Vitamin D (ng/mL) 17.42 ± 11.99 18.27 ± 10.69 18.34 ± 10.95 19.98 ± 10.72 0.002a

Fibrinogen (gm/L) 3.22 ± 0.66 3.43 ± 0.68 3.42 ± 0.66 3.61 ± 0.74 < 0.001***, a

Glucose (mmol/L) 4.73 ± 0.9 5.93 ± 2.29 6.36 ± 2.56 7.59 ± 3.85 < 0.001***, a

HBA1C % 5.37 ± 0.8 5.85 ± 1.36 6.06 ± 1.26 6.76 ± 1.85 < 0.001***a

HDL (mmol/L) 1.35 ± 0.32 1.28 ± 0.33 1.27 ± 0.36 1.31 ± 0.35 0.002**a

Insulin (mcunit/mL) 10.19 ± 9.64 15.96 ± 15.68 16.92 ± 16.1 20.26 ± 27.27 < 0.001***a

Iron (umol/L) 16.15 ± 6.72 15.4 ± 5.96 15.93 ± 6.19 14.13 ± 5.65 0.004*a

LDL (mmol/L) 3.12 ± 0.9 3.19 ± 0.98 3.22 ± 0.92 3.21 ± 1.14 0.365a

Phosphorus (mmol/L) 53.08 ± 9.92 53.02 ± 9.98 52.75 ± 9.52 54.73 ± 8.82 0.25a

Potassium (mmol/L) 235.9 ± 71.32 248.48 ± 67.88 238.78 ± 66.64 247.6 ± 67.02 0.111a

Sodium (mmol/L) 5.1 ± 0.54 5.15 ± 0.55 5.22 ± 0.59 5 ± 0.57 0.017*a

TSH (mIU/L) 12.37 ± 10.86 10.58 ± 9.79 11.08 ± 8.76 8.41 ± 9.16 < 0.001***a

Total Protein (gm/L) 68.38 ± 12.32 62.87 ± 10.04 62.13 ± 9.98 63.16 ± 10.09 < 0.001***a

Triglyceride (mmol/L) 74.66 ± 4.25 73.87 ± 3.86 73.58 ± 3.68 73.66 ± 3.98 0.003**a

Urea (mmol/L) 1.13 ± 0.84 1.48 ± 0.84 1.66 ± 0.97 1.55 ± 0.75 < 0.001***a
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composition of the salivary microbiome in all groups 
was similar, our differential abundance analysis (DAA) 
of the salivary microbiome at the phylum level revealed 
that Bacteroidetes and Proteobacteria were more abun-
dant (p < 0.001) in the normal BP group compared to the 
high BP groups (Fig. 2). Whereas Firmicutes and Proteo-
bacteria were enriched in the high BP groups (p < 0.001) 
(Fig. 2). At the genus level, our data analysis revealed that 
the salivary core members were Streptococcus, Prevotella, 
Porphyromonas, Granulicatella, and Veillonella (Fig. 3).  

DAA at the genus level showed that Prevotella, Neisse-
ria, and Haemophilus are significantly higher in the nor-
mal BP group compared to the high BP groups (Fig. 4), 
whereas Bacteroides, Lactobacillus, and Atopobium are 
mainly observed in the high BP groups (Fig. 4).

The results from the analysis of alpha diversity 
parameters, specifically the Simpson and Shannon 
indices, indicate that the normal BP group exhibits 
significantly higher diversity compared to the high 
BP groups, as illustrated in Fig.  5. Furthermore, the 

Fig. 1  The salivary microbiome composition at the phylum level. Y-axis shows % of relative abundance of the microbiome; X-axis indicates 
the Normal, Elevated, Stage1, and Stage 2 groups
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Fig. 2  Bar Graphs of differentially abundant salivary microbiome among the phyla. Each color indicates different groups Pink—Normal, Violet—
Elevated, Orange—Stage1, Green—Stage 2
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beta diversity analysis using the Bray–Curtis distance 
matrix reveals that the normal BP group is signifi-
cantly different from the high BP groups, as shown in 
Fig. 6.

Machine learning approach for predicting hypertension 
using salivary microbiome
We then applied an independent machine learning (ML) 
algorithm to distinguish between the salivary micro-
bial communities across the high BP groups and com-
pare them to the normal BP samples. To search for the 

Fig. 3  The salivary microbiome composition at the genus level. Y-axis shows % of relative abundance of the microbiome; X-axis indicates 
the Normal, Elevated, Stage1, and Stage 2 groups
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Fig. 4  Bar Graphs of differentially abundant salivary microbiome among the genera. Each color indicates different groups Pink—Normal, Violet—
Elevated, Orange—Stage1, Green—Stage 2
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biomarker validation, we focused on the abundance of 
six selected bacterial genera including Prevotella, Neis-
seria, Haemophilus, Bacteroides, Lactobacillus, and 
Atopobium as a training set and test set among the 
50-random splits of the data. We used Random For-
est as the feature estimator as described in the methods 
section. Our results showed that the selected bacterial 

markers show a promising area under the curve (AUC) of 
0.89 (Fig. 7). Individual group comparisons showed that 
Normal group has the highest AUC with 0.88, followed 
by elevated group with 0.67, Stage 2(0.67) and Stage 1 
(0.64). Individual AUROC is good (~ > 0.65) with accept-
able in comparison with Normal group, but when they 
are pooled as a single group these identified microbial 

Fig. 5  Alpha diversity measures Shannon (top panel) and Simpson (bottom panel) indices for the Normal, Elevated, Stage1, and Stage 2 groups

Fig. 6  Principal Coordinates Analysis (PCoA) based on Bray–Curtis distances of salivary microbiome. Axes were scaled to the amount of variation 
explained; Boxplots of bray-distance matrices among the hypertension groups. *P < 0.05, **P < 0.01, ***P < 0.001
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markers have shown excellent discrimination (Additional 
file 3: Fig S3).

Salivary microbial metabolic link with hypertension
After observing differences in the salivary microbiome 
profiles across the Normal, Elevated, Stage 1, and Stage 
2 groups, we conducted an analysis of the potential func-
tional role of these bacteria in hypertension pathogen-
esis using PICRUST and KEGG/COG databases. Our 
analysis revealed significant differences between the 
estimated functional capabilities of the salivary microbi-
ome in the normal BP group and Elevated, Stage 1, and 
Stage 2 (Fig.  8). In addition, PICRUSt-KEGG analysis 
showed a significant increase in the microbes contribut-
ing to Starch and sucrose metabolism in the Elevated, 
Stage 1, and Stage 2 groups than in the normal BP group 
(Fig. 8). Conversely, microbial sequences linked to sulfur 
metabolism and sulfur-containing amino acids, including 
Cysteine and methionine metabolism (Fig.  8), were sig-
nificantly more abundant in the normal BP group than 
in the high BP groups. Similarly, predicted metabolic 
routes of d-Arginine and d-Ornithine metabolism were 
significantly higher in normal BP compared to elevated 
and stage 1 groups. In contrast, Conversely, the stage 2 
group displayed a notably higher proportion of d-argi-
nine and d-ornithine metabolic pathways compared to 
the elevated group, as shown in Fig. 9. Additionally, the 
metabolic pathways for renin-angiotensin system (RAS) 
were significantly elevated in the normal BP group rela-
tive to the stage 2 group (Fig. 9). Moreover, the predicted 
metabolic pathways using the COG database revealed 

that COG-4362 (NO synthase) was significantly more 
abundant in the high BP groups compared to the normal 
BP group, as depicted in Additional file 1: Fig. S1.

Furthermore, Spearman cross-correlation analysis 
of COG-4362, selected six salivary microbes, BP val-
ues, Cholesterol levels and Insulin levels showed that 
In normal group, we observed that HDL-cholesterol 
is positively correlated with C0G-4362 but no signifi-
cant correlations were observed with neither cholesterol 
nor insulin levels of high BP groups including elevated, 
Stage1 and Stage2 (Additional file 4: Fig. S4A–D). Among 
the bacteria, Atopobium showed significantly negative 
correlation with COG-4362 in elevated, stage1 and stage2 
groups, whereas Neisseria revealed the significantly posi-
tive correlation with COG-4362 in high BP groups.

Discussion
Hypertension is the third most crucial risk factor for 
stroke, CVD, and other diseases globally [35]. However, 
despite the number of hypertension cases increasing 
worldwide, the mechanism of pathogenesis and effec-
tive treatments are still unclear. Previous studies have 
described the gut microbiome’s role in hypertension 
in animal and human models [36–38]. However, stud-
ies focusing on the salivary microbiome changes during 
hypertension and their role in its pathogenesis remain 
sparse. To address this knowledge gap, we conducted 
a study that analyzed the salivary microbiome of 1190 
Qatari subjects participating in QGP. By examining the 
salivary microbiome, we hope to gain new insights into 

Fig. 7  ROC curve for the model of control and BP group, which displayed the cross-validation error as a receiver operating characteristic (ROC) 
curve with a 95% confidence interval. The area under the ROC (AUROC = 0.89) is given below the curve. The x-axis and y-axis represent false-positive 
and true-positive rates, respectively, for the tested markers. Pale orange color—BP group; Black color—Normal group. The micro average precision 
is the sum of all true positives divided by the sum of all true positives and false positives. The macro averaging is the arithmetic means of all recall 
scores for different groups involved in this study. Macro averaging gives equal weight to each category while micro averaging gives equal weight 
to each sample
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the relationship between hypertension and changes in 
the oral microbiome.

In accordance with the American Heart Association 
(AHA) guidelines, we stratified our cohort based on BP 
readings into four groups: normal, elevated, stage 1, and 
stage 2. We found that hypertensive individuals in the 
latter three groups were  older and had a higher body 
mass index (BMI) compared to normotensive individu-
als. Though, it is widely reported that HTN is positively 
linked to increasing age. In this study, the selected par-
ticipants were age matched with each group (Age range: 
Normal 19–64; Elevated 18–80; Stage1 19–69; Stage2 

19–76) from the cohort of QGP. The dysbiosis is mainly 
due to an increase in blood pressure irrespective of age 
factor in this study. In Chinese population, obstructive 
sleep apnea patients with comorbid HTN showed dysbio-
sis of salivary microbiome than healthy control with same 
age group [33]. A metanalysis of 4 cohorts study confirms 
that increased tendency HTN observed in women than 
men in their third decade of the life [39]. Another obser-
vational study infers that specific oral microbes are asso-
ciated with the baseline BP and increased risk of HTN in 
menopausal women [40]. Based on these literature evi-
dences, we infer that HTN and SM are associated/linked 

Fig. 8  Significant metabolic functional prediction in normal BP group compared to elevated, stage1, and Stage 2 groups (Kruskal Wallis. *P < 0.05;). 
Blue for normal BP, orange- Elevated, Green for Stage1, violet for Stage 2
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irrelevant of age factor. Our vascular system in addition, 
hypertensive individuals also had higher levels of C-pep-
tide, HbA1C, glucose, and insulin and higher cholesterol 
levels than normotensive individuals. These findings are 
not surprising, as many studies have established a strong 
association between metabolic syndrome, which is char-
acterized by a cluster of abnormal metabolic conditions 
such as obesity, diabetes, and hyperlipidemia [41, 42] and 
hypertension.

In our study cohort, we found that alkaline phos-
phatase (ALP) levels were significantly higher in the 
high BP groups than the normal BP group. ALP is a 
clinical marker of bone or hepatic diseases and is typi-
cally derived equally from the liver and bone in healthy 
individuals [43]. Previous investigations have suggested 
that increased levels of ALP may be associated with 
vascular calcification, which may play a significant role 
in the development of vascular disease. Furthermore, 

previous studies indicated that cerebral small artery 
dysfunction and CVD are both associated with greater 
serum ALP levels [44–46].

Numerous studies have explored the potential role of 
the gut microbiome in the pathophysiology of various 
diseases such as diabetes, obesity, and hypertension, 
among others [47–50]. However, studies on the sali-
vary microbiome have been conducted at a much lower 
level, and there have been very few studies on the role 
of the salivary microbiome in hypertension [23, 34, 51, 
52].

In our previous studies, we examined the salivary 
microbiome and found that Bacteroidetes, Firmicutes, 
and Proteobacteria were the predominant phyla, and 
Streptococcus, Prevotella, Porphyromonas, and Veil-
lonella were the most common genera among the Qatari 
population [22, 23, 53]. These findings underscore the 
need for further research to better understand the 

Fig. 9  Significant d-Arginine and d-ornithine metabolic and Renin-Angiotensin metabolic functional prediction in normal BP group compared 
to elevated, stage1, and Stage 2 groups (Kruskal Wallis. *P < 0.05;). Blue for normal BP, orange- Elevated, Green for Stage1, violet for Stage 2
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potential role of the salivary microbiome in hypertension 
and other diseases.

In our current study, we explored the diversity and 
microbial changes in the saliva of Qatari participants suf-
fering from hypertension. Our results revealed that sub-
jects with high BP (Elevated, Stage 1, and Stage 2) have 
significantly lower diversity in their salivary microbiome 
compared to those with normal BP. This reduction in 
microbial diversity was previously reported in subjects 
using chlorhexidine mouthwash and has been shown 
to positively correlate with increased BP by altering the 
abundance of nitrate-reducing bacteria [54–56]. Fur-
thermore, we found that Prevotella, Neisseria, and Hae-
mophilus were significantly enriched in the normal BP 
group compared to the other groups, which are the most 
abundant microbial members of saliva and essential oral 
nitrate-reducing bacteria [57, 58] to regulate BP in nor-
mal group. A comparative study between hypertensive 
and normotensive participants showed that Prevotella 
is considerably elevated in the normotensive group [59, 
60]. A case–control study that assessed the link between 
salivary NO, hypertension, and the microbiome showed 
that Neisseria subflava and salivary NO were significantly 
higher in normotensive when compared to hypertensive 
subjects [32]. Our findings suggest that Haemophilus and 
Neisseria are essential oral nitrate-reducing bacteria that 
regulate systemic BP via the nitrate-nitrite-NO pathway 
[61, 62]. A dysbiosis or reduction of these critical salivary 
bacteria that regulate BP may promote endothelial dys-
function and increase the risk of CVD.

On the other hand, Qatari participants with high 
BP displayed a notable increase in the abundance of 
Atopobium, Bacteroides, and Lactobacillus. Sohail et  al. 
previously showed that Atopobium was significantly 
overrepresented in the hypertensive group [34]. Yan et al. 
also reported that Bacteroides were significantly more 
abundant in the hypertensive group compared to con-
trols [50]. Similarly, Silveira-Nunes et  al. showed that 
Lactobacillus is significantly more prevalent in the Brazil-
ian hypertensive cohort [63].

We employed the random forest classifier, a supervised 
machine learning algorithm, to investigate whether the 
microbial signature we found between the groups can 
serve as biomarkers for hypertension. The classifica-
tion models using six microbial features that were used 
together yielded an area under the receiver operating 
curve (AUC) value of 0.89 in the sensitivity–specificity 
plot. Our study is the first to predict the BP-associated 
salivary microbial marker using a Machine learning 
approach in the Qatari population. A cohort of hyper-
tensive patients will be needed to further validate our 
findings.

PICRUSt-KEGG analysis revealed that the predic-
tive microbial metabolic functions such as starch, and 
sucrose metabolism were increased in the hypertensive 
groups and that cysteine and methionine metabolism, as 
well as the sulfur metabolisms, were increased in the nor-
mal BP group. High starch and sucrose metabolic routes 
in hypertension groups suggest that those microbes will 
have a higher ability to extract more carbohydrates from 
the diet when present in the oral cavity and later convert 
the excess sugar into lipids [64]. Hypertension, obesity, 
dyslipidemia and insulin resistance are the factors posi-
tively associated with each other [65]. The body’s extra 
calories will cause cellular deaths of visceral adipocytes 
and be engulfed by macrophages to form crown-like 
structures [66]. In addition, it induces the expression of 
TNF-Alfa and IL-6, and nitric oxide synthase [67]. These 
compound changes might provide its pathophysiologi-
cal association with hypertension, insulin resistance, and 
dyslipidemia. It is also well-known that sulfur metabo-
lism is involved in the metabolism of sulfur-containing 
amino acids such as cysteine and methionine to regulate 
the arterial blood pressure [68]. PICRUSt-COG analysis 
revealed that the microbial clusters of orthologs such as 
COG 4362 (Nitric Oxide Synthase) were significantly 
higher in BP than in the normal groups. Nitric oxide 
synthase metabolizes arginine to produce Nitric Oxide, 
which regulates blood pressure through angiotensin-II 
[69]. Negative correlation with LDL and COG4362 indi-
cates its regulatory role to reduce the BP and CVD risk 
in normotensive group. In contrast, showed significantly 
negative correlation with COG-4362 in elevated, stage1 
and stage2 groups. An imbalance in this cycle will lead to 
oxidative stress-mediated endothelial dysfunction. Our 
findings may provide insight into the role of salivary bac-
teria and their role in hypertension pathophysiology and 
progression.

Conclusions
Associations of salivary biomarkers with hypertension 
were assessed using a combination of 16S rRNA gene 
sequencing, in silico prediction, and ML-based mod-
els. Developing an early screening/treatment model 
for hypertension is essential to provide better health-
care for our patients. The salivary microbiome signifi-
cantly influences host health through its involvement in 
many physiological and biological pathways. A profound 
understanding of this complex dynamic structure might 
improve our understanding of diseases and advance 
their diagnosis. In summary, our data show that the sali-
vary microbiome composition was significantly different 
between the normal, elevated, stage1, and stage 2 hyper-
tension groups, including Haemophilus, Prevotella, and 
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Neisseria, which were found to be enriched in the normal 
BP group.

On the other hand, Bacteroides and Lactobacillus were 
enriched in the high BP group and were predicted to 
increase carbohydrate metabolic routes. Prevotella, Hae-
mophilus, and Neisseria may act as protectors to regulate 
BP via nitric acid synthesis and regulation of the renin-
angiotensin system. More experiments using in vitro and 
in  vivo models are needed to confirm our findings and 
validate those mechanisms.

Methods
Study cohort
The study was approved by the Institutional Review 
Board (IRB) of Sidra Medicine under (protocol 
#1510001907) and by Qatar Biobank (QBB) (protocol 
#E/2018/QBB-RES-ACC-0063/0022. All experiments 
were performed under the approved guidelines. QBB 
and Sidra Medicine signed a collaboration agreement 
to collect coded saliva samples along with phenotypic 
and clinical data. In this study, we analyzed samples and 
data from 1190 Qatari participants who were randomly 
selected from the Qatari Genome Project (QGP). All 
participants were 18 years old and above, and no exclu-
sion criteria were applied. There were 725 males and 465 
females included (Table  1). Anthropometric and blood 
parameters were analyzed for each participant, includ-
ing BMI, total protein, hemoglobin, albumin, ferritin, 
calcium, iron, vitamin D, cholesterol, HDL, LDL, triglyc-
erides, and glucose levels.

Following the American heart association guidelines 
[70], the study cohort was categorized based on their 
blood pressure readings. The categories included Normal 
BP (normotensive) which is defined as having blood pres-
sure of less which was defined as having a systolic blood 
pressure between 120 and 129  mm Hg and a diastolic 
blood pressure of less than 80 mm Hg; Stage 1, which was 
defined as having a systolic blood pressure between 130 
and 139 mm Hg or a diastolic blood pressure between 80 
and 89 mm Hg; and Stage 2, which was defined as having 
a systolic blood pressure of at least 140 mm Hg or a dias-
tolic blood pressure of at least 90  mm  Hg. The Mann–
Whitney test was used to calculate statistical significance 
using MINITAB-17 [71]. P-values less than 0.05 were 
considered statistically significant.

Total salivary DNA extraction
Saliva samples were collected in QBB as described pre-
viously [22], and stored at − 80 °C until further analysis. 
Then, the total salivary DNA was extracted using the 
automated QIAsymphony protocol (Qiagen, Hilden, Ger-
many), following the manufacturer’s instructions [23].

16S rRNA gene sequencing and data analysis
The V1–V3 regions of the 16S rRNA gene were ampli-
fied using the Illumina Nextera XT library preparation kit 
(FC-131-1002). The amplified PCR products of ~ 650  bp 
in size from each sample were purified using Agencourt 
AMpure XP magnetic beads (Beckman Coulter) and 
pooled in equimolar concentrations. High throughput 
sequencing was performed on an Illumina MiSeq 2 × 300 
PE (Illumina, Inc. San Diego) in accordance with manu-
facturer’s instructions. Image analysis and base calling 
were carried out directly on the MiSeq. The sequence 
data were analyzed using QIIME1.9.0 pipeline [22, 72]. 
Operational taxonomic units (OTUs) were generated by 
aligning against the Greengenes database (Version:13_8) 
with a confidence threshold of 97% [73].

Taxonomic and diversity analyses
The relative abundance of the salivary microbiome of the 
study groups was generated using R- "MicroEco" package 
[74] from the OTUs generated using QIIME. Differen-
tial abundant analyses of salivary microbiome among the 
study groups at the phylum and genus levels were done 
by univariate – Wilcoxon test using the same package. 
Alpha diversity measures, including Shannon, and Simp-
son indices, were calculated with "animalcules" package 
[75]. Beta diversity indices were presented as principal 
coordinate analysis and the differences in the Bray–Cur-
tis distance matrix between the study groups was per-
formed using MicroEco [74].

Prediction of metabolic routes and functional differences 
among the groups
The metagenome KEGG orthologs (KOs), clusters of 
orthologs groups (COGs) and RNA families (Rfam) [76] 
of the analyzed samples were predicted with the Phylo-
genetic Investigation of Communities by Reconstruc-
tion of Unobserved States (PICRUSt) tool [77] against 
the OTUs present in the Greengenes database [73]. The 
detected KOs were then collapsed to the pathway level 
(KEGG level 3) using PICRUSt. The profiles of functional 
pathways were further analyzed with Kruskal Wallis and 
Tukey–Kramer post hoc analysis. These were then cor-
rected for multiple testing with the Bonferroni method 
using the software package statistical analysis of taxo-
nomic and functional profiles (STAMP) [78].

Machine learning modeling
The salivary microbiome biomarkers were predicted 
using a supervised learning classifier based on hyperten-
sion. We randomly split the data 50-times into a train-
ing set (80%) on which the predictive models were built 
and a test set (20%) on which we tested the performance 
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of each model. Optimal tuning parameters were cho-
sen via fivefold cross-validation. The test set validated the 
classification accuracy of the Random Forest as an opti-
mized estimator [79].
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