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Abstract 

Background  Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the 
nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to 
distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend 
on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting 
effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity.

Main text  Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. 
Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of 
contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. 
This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis 
of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrat-
ing the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain 
atlases as the main components. The templates associated with the outcome of straightforward analyses represent 
promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to 
other cancers.

Conclusions  The focus on novel inference strategies applicable to complex cancer systems and based on building 
radiomic models from multimodal imaging data can be well supported by machine learning and other computa-
tional tools potentially able to translate suitably processed information into more accurate patient stratifications and 
evaluations of treatment efficacy.
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Graphical Abstract

Introduction
Glioblastoma multiforme (GBM)
GBM is the most common type of malignant primary 
brain tumor but is still not well understood. It pre-
sents a poor prognosis with a median survival of about 
15 months for patients who receive standard therapy 
(Stupp protocol, based on surgical resection and radio-
therapy combined with concomitant chemotherapy). 
Population-RWD (real-world data) based meta-anal-
yses suggest that 2-, 3- and 5-year survival in GBM 
patients only partially improved since 2005 [1]. Recent 
advances in understanding the molecular biology of 
GBM leveraged studies on genetic alterations and 
genomic profiles [2–4], including subclone diversity, via 
single cell DNA sequencing, and transcriptome profile 
diversity, via single cell RNA-sequencing [5, 6].

In common with other cancers, the tumor microen-
vironment (TME) plays a complex role in GBM too. 
Generally responsible for growth and invasion, TME is 
highly variable at the intra-tumor spatial level, and both 
cellular and molecular interactions have not yet led 
to causal explanations [7, 8]. However, the increased 
imaging centrality driving radiomic studies, especially 
magnetic resonance imaging (MRI) in GBM, has drawn 
novel interest in computational modeling to improve 

diagnosis, prognostication and clinical decision sup-
port [9–11].

Radiomics
Radiomics is a multidisciplinary field that engages sci-
entists in processing various interconnected tasks such 
as tumor segmentation, image preprocessing, feature 
extraction, model development, testing and validation. 
Usually, segmentation is performed on annotated images 
by targeting whole tumors, subregions or peritumoral 
areas (all defined through regions of interest or ROI) to 
extract features describing distributions of signal intensi-
ties and spatial relationships. Selected features are those 
bringing differentially informative content regarding 
texture, shape, statistical descriptions, intensity-based 
measures etc. The major interest is in texture, as it reveals 
patterns characterized by brightness, color, slope, size. 
The analysis of features aims to quantify variations in 
intensity values and gray levels. Other relevant tumor 
information comes from shape characteristics whose 
analysis elucidates geometric aspects through shape 
descriptors.

There are a few factors in the radiomics workflow that 
influence these features and their significance. First, fea-
tures may undergo manual, semi-automatic or automatic 
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treatment. For instance, automatic learning typically 
involves Machine Learning (ML) and Deep Learning (DL) 
algorithms that tend to outperform more classical statis-
tical techniques with complex and big datasets [12–14]. 
The search for feature saliency may require a reduction of 
dimensionality to embed only the most informative char-
acteristics then used to train models and determine the 
best possible accuracy. Alternatively, analyses supported 
by hand-crafted features may also be highly valuable due 
to superior interpretability [15, 16], even when combined 
with ML-derived ones [17–19]. This choice might be 
instrumental to clinical translational, given multiple cri-
teria to be applied [20, 21].

Due to the substantial image data space that has 
become available through data repositories for research, 
examples being The Cancer Imaging Archive, TCIA 
(https://​www.​cance​rimag​ingar​chive.​net/) [22] or the 
newborn EuCanImage (https://​molge​nis.​eibir-​edc.​
org/), there is a massive call for analysis based on com-
putational and predictive modeling and developments of 
novel integrative multi-omics inference tools. The appli-
cations range from tumor segmentation and anatomical 
lesion detection [23] to computer-aided diagnosis and 
prognosis [24, 25], just to mention a few. Some criticism 
persists relatively to a certain lack of interpretability [26], 
nonetheless inspiring the emerging explainable artificial 
intelligence (XAI) [27–30] research. In general, despite 
the necessity to measure any radiomic tool in terms of 
clinical value, our understanding of intra-tumor het-
erogeneity in GBM has received a strong impulse from 
radiomics with reference to a few specific domains. No 
doubt that a better characterization of intra-tumor het-
erogeneity will determine any future progress in terms of 
outcome prediction and personalized treatment.

Focus areas
TME, habitats and saliency
As tumor regions are biologically different, the most spe-
cific use of radiomic features is one that leverages these 
quantitative measures to support genetic or epigenetic 
evidence as well as phenotypes (aggressiveness degree, 
resistance mechanisms, etc.) elucidating differentiated 
patterns of metabolism, hypoxia, proliferation, neovascu-
larization. Radiomics that informs on tumor surrounding 
tissues, including the TME, provides additional prognos-
tication power (for instance, in high-grade glioma [31, 
32] this affects the possibility to predict tumor’s aggres-
siveness) and ability to monitor patient’s response to 
therapy via follow-up imaging and detect new or modi-
fied areas of enhancement, e.g., assessment of risk of 
tumor progression (TP) versus treatment-related changes 
or pseudo-progression (PsP) [33, 34].

One aspect of heterogeneity in tumors consists of dif-
ferentiated TMEs, something which has motivated the 
recent investigation of the so-called habitats [35–40]. 
Imaging habitats can quantify the grey-level heterogene-
ity appearing from scans, which helps detect variations 
in tumor blood supply. Generally obtained by supervised 
segmentation of the tumor into sub-regions that map 
its complex organizational structure, the complexity of 
habitats naturally translates into a very rich data milieu 
needing ad hoc computational treatment, even beyond 
the association of habitats with somehow defined clusters 
[41]. Clustering methods can identify tumor sub-regions 
contributing with varying prognostic performances. 
However, the identified clusters or sub-regions are usu-
ally the result of the application of globally defined 
thresholds that often have minimal biological value. Also, 
biology may not be able to guide selectively the cluster 
being formed or a reasonable weighting based on the 
retrieved radiomics features. Finally, clustering often 
employs simple structures determined with some degree 
of arbitrariness (say, the choice of the number of clusters) 
or may assume data hierarchies that are algorithmically 
valid but have limited contextual relevance (say, random 
forest, trees etc.).

All the above aspects influence the definition of sali-
ency, for instance relatively to the hypotheses about the 
importance to assign to tumor regions based on their 
phenotypic contributions. In principle, a clinically useful 
saliency map would be predictive for the risk of relapse 
given the improved model performance expected when 
selected (salient) features are chosen. However, each spe-
cific context must be carefully analyzed, and for instance 
GBM has a highly complex background with lots of 
redundant information due to its the multiscale nature. 
This somehow contrasts with the idea of targeting spe-
cific ROI embedding the saliency of contextual charac-
teristics, and is something not linearly solvable (i.e., by 
fixing thresholds to establish saliency that identify sig-
nificant foci or connecting to them surrounding regions 
through some functions or distances).

Multimodal data integration
To address saliency, it is important to consider the fact 
that imaging informs at the spatial level by identifying 
sub-regions that may vary across multi-modal sequences 
(e.g., T1, T1-post contrast, T2 and FLAIR sequences 
etc.). Interestingly, multi-modality extends beyond the 
imaging combinations to include the associations with 
phenotypes, i.e., gene expressions and correlation with 
molecular subtypes [42], or outcome via survival. These 
developments have inspired the field of radiogenom-
ics revealing associations between imaging phenotypes 
(tumor location, neo-angiogenesis, tumor enhancement 

https://www.cancerimagingarchive.net/
https://molgenis.eibir-edc.org/
https://molgenis.eibir-edc.org/
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etc.) and molecular marks, ultimately leading to refined 
patient stratifications [43–45]. Also, the differentiation of 
tumor molecular profiles based on imaging traits implies 
that identified MRI phenotypes may be used to probe the 
underlying genotypes [46–48]. MRI-driven radiomics has 
probed substantial relationships also between genomic 
GBM profiles and imaging traits [49, 50].

Leveraging imaging multi-modality implies taking 
decisions on what modes to combine and why, based on 
the general expectation of building more effective radi-
omic models compared to those dependent on any sin-
gle modality only. Decisions face a spectrum of possible 
combinations of different MRI sequences [51], with rel-
evance assigned to their clinical impact [52]. At data and 
computational levels, the fusion of multiple modalities 
may also vary, for instance depending on the stage. At 
early stages, i.e., before feature classification, when com-
bined with clinical information (risk factors etc.). Inher-
ent technological aspects may also prevail, for instance 
with CT presenting insufficient soft-tissue contrast. More 
in general, one problem is the presence of imbalanced 
classes in the data sets, something affecting the classifier 
learning ability, likely inducing bias towards the majority 
class, incorrect predictions and less robust models.

Potential gains from modality fusion in terms of model 
performance can be tested both during the modeling 
stage, when fusions may depend on active or incremental 
learning, and during later stages (decision level) too. [53–
56]. Data heterogeneity is another aspect, as the fusion 
of mixed data types should achieve superior predic-
tive accuracy. In both such regards, model performance 
improvements and data diversity, the role of ML toward 
handling large amounts of radiomic features character-
izing tumor phenotypes integrated with other data types 
has primarily focused on building accurate and replica-
ble models for tumor classification and outcome pre-
diction. As an example, multimodal MRI radiomics can 
effectively differentiate GBM from lower grade gliomas 
and characterize the IDH and 1p/19q status using a ML 
approach useful to clinical practice [57]. In general, treat-
ing multimodality presents several complexities. One is 
inherent to the definition of multimodality (restricted to 
imaging or inclusive of other data types) [58]. Another 
is more contextual and may refer for instance to type of 
treatment and disease evolution [59]. Then, while more 
robust estimations can be reasonably expected with mul-
timodal methods, scalability can be an issue, although 
deep neural networks show high accuracy with hyper-
scale data sets (about 5 ml images) [60].

Finally, another interesting domain linked to both 
habitats and data integration/multimodality is imaging 
synthesis [61–65], where an increased number of image 
features retrieved from multiple regions and different 

sources may require relatively large cohort sizes. This 
may offset the limited biological meaning found in habi-
tats by leveraging large-scale validations involving tissue 
phenotypes and histology. Note that spatial co-registra-
tion of images and histology can be instrumental to the 
use of MRI habitats for delineation of hypoxia, necrosis 
etc. [66]. Especially with reference to necrosis, significant 
contributions have come from multiple studies [67–72], 
indicating the informativeness and classification impact 
of both handcrafted and deep features extracted from 
multimodal MRI images. Of note that radiomic texture 
features informative about both the lesion and the peri-
lesion environment (defined as “lesion habitat”) can dis-
tinguish radiation necrosis and tumor recurrence [73].

Pillars
Brain atlases as integrative tools
Brain function is related to brain organization, which in 
turn refers to spatial heterogeneity. Brain Atlases usually 
operationalize these concepts through the parcellation 
or partitioning of the brain in multiple closely interact-
ing regions [74]. Many atlases exist that collect brain data 
(tumor and non) and describe high-resolution location-
specific maps centered on imaging data, becoming tools 
that support quantitative analyses. For instance, fMRI or 
functional MRI-driven brain studies help define proba-
bilistic maps based on functional and structural data 
[75]. In general, non-random localizations of lesions are 
identified through specific patterns and marks in capture 
points or ROI [76]. Then, brain’s information is processed 
from characteristics at both structural and functional lev-
els [77]. A common goal is to infer causal influences from 
experimental measures and exploit the interconnectivity 
between multiple data to provide mechanistic insights on 
the nature of their relationships. While fMRI estimates 
functional connectivity (brain activity), the discovery of 
brain disease signatures emerging from different brain 
network patterns can also result from integrating other 
MRI types, e.g., diffusion (dMRI) and structural (sMRI) 
to study anatomical and pathological connectivity from 
shape, size, and integrity of brain structures.

Atlases can be useful reference tools and represent 
templates for brain segmentation tasks. Among the many 
available resources and tools, The neuromaps software 
toolbox [78] (https://​github.​com/​netne​urolab/​neuro​
maps) offers structural and functional annotations of the 
human brain through a variety of reference maps and bio-
logical ontologies. Then Neuroparc [79] (https://​github.​
com/​neuro​data/​neuro​parc), conceived to standardize 
existing atlas repositories (46 different adult human brain 
parcellations of various type, surface-based, volume-
based etc.). Global integrative analyses may require other 
types of tools such as BCGene [80] (http://​soft.​bioin​

https://github.com/netneurolab/neuromaps
https://github.com/netneurolab/neuromaps
https://github.com/neurodata/neuroparc
https://github.com/neurodata/neuroparc
http://soft.bioinfo-minzhao.org/bcgene/
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fo-​minzh​ao.​org/​bcgene/), which explores genetic mecha-
nisms from about 1400 literature-curated human genes 
in 40 brain cancer subtypes and about 3000 patients. 
Specific to GBM, a well-known resource is the Ivy Glio-
blastoma Atlas Project (Ivy GAP) [81, 82] (http://​gliob​
lasto​ma.​allen​insti​tute.​org/), a comprehensive resource 
on GBM anatomy and genetics characterizing the cellular 
and molecular structures.

Connectome for functional studies
Connectome research [83, 84] is an area potentially 
receiving a strong impulse from brain atlases. A reference 
study [85] in brain tumor connectome analyzed neuroim-
aging data from 335 adult patients with high- and low-
grade glioma and combined them into a replicable tumor 
frequency map correlated with multiple graph-theoreti-
cal metrics establishing high functional connectedness. 
The application of a regression model with connectome, 
cellular, and genetic variables has explained 58% of the 
variance in glioma frequency, showing the indepen-
dently exerted influences over the anatomic localization 
of oncogenesis. Another study [86] has leveraged the 
mapping of independent sources of glioma localization 
determining their relationships with neurogenic niches, 
genetic markers, and large-scale connectivity networks. 
Then, by applying independent component analysis 
(ICA) to lesion data from 242 adult patients with high-/
low-grade glioma, three lesion covariance networks were 
identified to represent clusters of frequent glioma locali-
zation. These networks were associated with clinical vari-
ables and genomic information, and structural/functional 
connectivity was derived from neuroimaging data to 
uncover brain networks prone to tumor development.

Neuroplasticity
Research on GBM radiomics requires precise defini-
tion of structural and functional features to infer factors 
explaining pathogenetic mechanisms together with dis-
ease progression or evolution [87]. By combining such 
features, MRI technologies can explore the neuroplasti-
city of structural, topological, biochemical metabolism, 
and related mechanisms [88]. MRI is typically used to 
provide detailed anatomical and pathological informa-
tion in addition to physiological detail. Neuroplasticity 
caused by highly heterogeneous brain tumors could ben-
efit from multimodal MRI offering individualized pre-
diction of functional prognosis of patients based on ML 
algorithms [89]. Through the (semi-) automatic iden-
tifications of image features, ML brings accuracy in the 
classification and facilitates the integration with molec-
ular profiles, histological tumor grade, and prognostic 
factors by using images acquired both at diagnosis and 

treatment, including follow up to enable differentiation 
between response and post-treatment-related effects.

Brain atlas and radiomics integration
To demonstrate the potential use of brain atlases in 
combination with radiomics, we chose the atlases and 
databases publicly available from UNC-Chapel Hill (as 
part of NITRC, ‘NeuroImaging Tools & Resources Col-
laboratory’, https://​www.​nitrc.​org/​proje​cts/​unc_​brain_​
atlas), and chose ‘UNC_Adult_Brain_Atlas_1’, i.e., the 
atlas of normal adult human brain anatomy generated 
from 50 + healthy adult cases (20–59 years old). The atlas 
comes with T1-weighted images (with and without skull), 
tissue segmentation probability maps (white matter, gray 
matter, CSF, rest) and a 27-lobe parcellation map.

The radiomic data were obtained from the multimodal 
MRI of GBM samples and TCIA radiological data (clini-
cal images) matched to TCGA subjects, considering only 
a couple of patients (for demonstrative scopes). We sub-
jected the samples to standard open source tools, i.e., 3D 
Slicer (https://​www.​slicer.​org/) and pyradiomics [90], 
https://​www.​radio​mics.​io/​pyrad​iomics.​html. The details 
of the data sets from The Cancer Genome Atlas Glioblas-
toma Multiforme Collection (TCGA-GBM) are available 
at https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​
TCGA-​GBM, and they aim to connect radiological phe-
notypes to tissue genotypes and patient outcomes. Note 
that the collected data focus on routine care rather than 
controlled studies or clinical trials, tissues from multiple 
sites and heterogeneous images due to different scanner 
modalities and acquisition protocols.

The visualizations of Fig. 1 display examples of parcel-
lation of the normal brain regions. By co-registering the 
frame that the atlas parcellation provides and the GBM 
images across the MRI modalities, we obtained spatially 
matched and integrated brain maps covering both nor-
mal and tumor brain regions. Single and combined MRI 
characteristics were then mapped (Figs. 2 and 3, respec-
tively) also considering the two brain hemispheres (with 
and without GBM) for measuring differential effects.

The visual associations between brain regions with or 
without GBM signatures retrieved from MRI radiomic 
features is well represented by biclusters. We looked 
for differential effects captured by the different MRI 
modalities (modality-1 = ‘FLAIR’; modality-2 = ‘T1w’; 
modality-3 = ‘T1w postCA’; modality-4 = ‘T2w’). In 
principle biclustering can identify associations between 
atlas-defined brain regions and radiomic features, offer-
ing a few advantages: (a) Facilitating the investigation of 
complex disease aspects (pseudo-progression and other 
treatment-related effects); (b) Bringing translational 
power for patient stratification and evaluation of treat-
ment efficacy when combined with clinical information; 

http://soft.bioinfo-minzhao.org/bcgene/
http://glioblastoma.alleninstitute.org/
http://glioblastoma.alleninstitute.org/
https://www.nitrc.org/projects/unc_brain_atlas
https://www.nitrc.org/projects/unc_brain_atlas
https://www.slicer.org/
https://www.radiomics.io/pyradiomics.html
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
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Fig. 1  Parcellation map obtained from the NITRC Brain Atlas (https://​www.​nitrc.​org/)

Fig. 2  MRI modalities (top) and Biclustering maps. For one GBM patient, four MRI modalities support biclustering maps displayed with all 
features (centre) or selected ones (bottom). The applied spectral biclustering algorithm https://​scikit-​learn.​org/​stable/​modul​es/​biclu​steri​ng.​html 
[91] assumes a hidden checkerboard structure for the input matrix and thus partitions its rows and columns according to a blockwise-constant 
checkerboard matrix. The most significant Gauss filtered biclusters appear at the bottom-right corner

https://www.nitrc.org/
https://scikit-learn.org/stable/modules/biclustering.html
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(c) Help select predictive MRI readouts-based models 
from ML approaches and libraries and use the fusion of 
information from multimodal features to improve the 
model performance in terms of prediction accuracy.

Some limitations may apply. Radiomics performs well 
by training over large data sets with accurate labels 
(from expert annotations) to facilitate the process of 
reproducing results of predictive models, generalizing 
across multiple training data sets, validating over inde-
pendent patient cohorts and ultimately translating into 
the clinics. Nevertheless, radiomic methods that inte-
grate multimodal images can establish robust signa-
tures of functional regions (such as tumor habitats) and 
associate them to outcomes.

By looking at Table  1 and considering that these 
annotations refer to the top-scored biclusters in Fig. 2 
(bottom-right corner), the imaging results in patient A 
show three recurrent brain regions (l = left, r = right), 
i.e., l_parietal, r_frontal and r_parietal_cingulate 
across three modalities, i.e., FLAIR, T1w, T2w. Then 2 
regions, l_CSF and r_prefrontal informed by T1w and 
T2w. In patient B, r_parietal_cingulate recurs across 
FLAIR and T1w, and r_corpus_callosum, l_cerebellum, 
r_subcortical, l_temporal recur across T1w postCA and 
T2w. At the opposite, r_cerebellum and l_subcortical 
appear only in patient B, while r_frontal only in patient 
A. Interestingly, very different radiomic feature combi-
nations appear in correspondence with the modalities 

Table 1  Biclusters from 2 patients across all MRI modalities 
combine brain regions and radiomic features. Note that for 
reasons of space only the data of patient A was previously 
visualized in Fig. 2

Brain regions Radiomic features

Patient A

 Modality-1 FLAIR 2, 5, 22 8, 10, 14, 19, 35, 40, 49, 
60, 71

 Modality-2 T1w 2, 5, 22, 25, 26 1, 17, 28, 29, 34, 58, 74

 Modality-3 T1w postCA 1, 5, 12, 13 97, 99, 100, 101, 103

 Modality-4 T2w 22, 25, 26 11, 33, 67, 68, 70, 82, 
83, 92

Patient B

 Modality-1 FLAIR 14, 15, 22 3, 16, 18, 20, 48, 59, 75, 76, 
79, 81, 84, 102, 105, 107

 Modality-2 T1w 2, 22 1, 8, 10, 28, 29, 34

 Modality-3 T1w postCA 12, 13, 16, 17 15, 24, 30, 31, 32, 43, 86

 Modality-4 T2w 12, 13, 16, 17, 25, 26 12, 23, 27, 82, 83, 91, 94, 
95, 104

Fig. 3  Top: Combined MRI modalities in Gauss filtered bicluster maps. Left: single modality. Centre: two combined modalities. Right: effects of 
modality subtraction (from two to one). Bottom: Visualization of differential effects induced by GBM in left and right hemispheres (N = 13 regions 
used to map) and by subtracting unsorted biclustering maps (rightmost plot). The MRI modality used is FLAIR
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for the two patients (see the Additional file 2 ‘SM_All-
regions’ with all the atlas brain regions).

The FLAIR modality indicates the relevance of texture 
aspects more in Patient A than B, although with a limited 
overlap of brain regions involved. T1w informs on new 
brain regions from both patients and includes similar fea-
tures with respect to local homogeneity properties of the 
images. T1w postCA involves a mix of brain regions in 
part overlapping between the two patients but associated 
to different features referred to shape descriptors (from 
ROI in both 2D and 3D) and texture heterogeneity (via 
glcm or gray level co-occurrence matrix, i.e., second-
order joint probability function of image regions). Finally, 
T2w informs in Patient A on three brain regions seen 
with T1w but associated to totally different features, rel-
atively to texture. In Patient B some similarities emerge 
from brain region overlaps with Patient A and previously 
informed by T1w postCA modality through texture-
related features, but here additionally related to shape 
features (see Additional file: 1 ‘SM_ALLfeatures’ with 
all the listed features, and for the source details https://​
pyrad​iomics.​readt​hedocs.​io/​en/​latest/​featu​res.​html).

Discussion and concluding remarks
We have reviewed GBM and some emerging research 
topics that hopefully can advance the field in the imme-
diate future. Among the identified needs that require 
pre-clinical investigation, there are integrative and mul-
timodal imaging data approaches. These are especially 
associated in brain to imaging tools such as MRI that 
offer multiparametric solutions and interpretations.

As examples of emerging concepts falling into these 
new developments there are imaging habitats that cap-
ture tumor heterogeneity through differentiated TME 
features whose characterization translates into complex 
and highly contextualized data fusions. New targeted 
computational inferences are here needed.

Saliency maps were also addressed to assign pheno-
typic relevance to the brain regions and delineate predic-
tively the features value for an assessment of the risk of 
relapse, again requiring consideration of contextual char-
acteristics to be suitably represented in computational 
models.

We then addressed an interesting space, atlas-driven 
radiomics, which complements the traditional targeted 
radiomics. The latter is based on consolidated main steps 
which include building tumor segmentations, extract-
ing features from ROI and classifying patients based on 
them. As an alternative, we showed that the use of brain 
atlases allows the design of interpretable templates that 
can become implementable tools depending on their 
definition and how their structures adapt to the various 
contexts, brain regions in our case.

We illustrated the potential use of such templates 
with GBM patients, and we easily foresee their gen-
eralizability to other brain cancers, always with the 
possibility of visualizing parcellation maps through 
applied computational tools, i.e., biclustering or simi-
lar. Concerning the value of this type of analysis for 
clinical scopes, the associations between brain regions 
and radiomic features can become more significant 
with the scale of the study, in which case features dis-
tributions classified by brain regions and patients may 
become informative for stratification purposes. Finally, 
the characterization that the template maps offer is 
useful for monitoring the disease evolution, and in 
such regard, concepts like imaging habitats and sali-
ency are extremely informative and deserve further 
investigation.
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