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Multi‑omics profiling of papillary thyroid 
microcarcinoma reveals different somatic 
mutations and a unique transcriptomic 
signature
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Abstract 

Background  Papillary thyroid microcarcinoma (PTMC) incidence has significantly increased, and some cases still 
exhibit invasive traits. The entire molecular landscape of PTMC, which can offer hints for the etiology of cancer, is cur-
rently absent.

Methods  We compared our findings with those for PTMC in the TCGA by analyzing the largest study at the current 
stage of whole exome sequencing and RNA-sequencing data from 64 patients with PTMC. Then, we systematically 
demonstrated the differences between the two PTMC subtypes based on multi-omics analyses. Additionally, we 
created a molecular prediction model for the PTMC subtypes and validated them among TCGA patients for individual-
ized integrative assessment.

Results  In addition to the presence of BRAF mutations and RET fusions in the TCGA cohort, we also discovered a new 
molecular signature named PTMC-inflammatory that implies a potential response to immune intervention, which is 
enriched with AFP mutations, IGH@-ext fusions, elevated immune-related genes, positive peroxidase antibody, and 
positive thyroglobulin antibody. Additionally, a molecular prediction model for the PTMC-inflammatory patients was 
created and validated among TCGA patients, while the prognosis for these patients is poor.

Conclusions  Our findings comprehensively define the clinical and molecular features of PTMC and may inspire new 
therapeutic hypotheses.

Keywords  Whole exome sequencing, RNA-sequencing, Papillary thyroid microcarcinoma, Molecular classification, 
Immune microenvironment
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Background
Thyroid cancer (TC) is the most common endocrine 
malignancy, and its incidence has risen dramatically over 
the past several years around the world [1]. Differenti-
ated thyroid cancer (DTC) represents the majority (90%) 
of all types of thyroid cancer, and papillary thyroid carci-
noma (PTC) is the most prevalent kind of DTC [2]. The 
increase in TC is mostly attributable to an increase in the 
detection of papillary thyroid microcarcinoma (PTMC, 
diameter ≤ 10 mm) [3]. The two histological subtypes of 
PTMC that occur most frequently are classic and follic-
ular-variant [4]. The majority of patients with PTMC are 
asymptomatic, with inert behavior and a favorable prog-
nosis. In 2015, the American Thyroid Association (ATA) 
recommended active surveillance (AS) for low-risk 
PTMC [5] to save some patients from needless surgery; 
however, lymph node involvement or distant metastasis 
may still occur in some patients [6, 7], leading to anxi-
ety among clinicians and patients, which hinders the 
implementation of AS [8]. Therefore, stratifying PTMC 
patients remains to be a challenge for the appropriate 
management of PTMC.

In the era of rapid development of next-generation 
sequencing technology, molecular profiling has emerged 
as a critical characterization for PTMC to enhance patient 
surveillance and treatment [9, 10]. However, most earlier 
investigations of genomic features focused on PTC sam-
ples, with only a few containing PTMC, and the patients 
under study were mostly from the European ancestry 
[11]. The molecular characteristics of PTC patients of dif-
ferent races are different. For instance, BRAF mutations 
are found in 72.4% of Chinese PTCs [12], which is much 
greater than that in Europeans, implying a racial differ-
ence between Chinese and Europeans. Furthermore, at 
present, the treatment of tumors, including PTMC, is 
mainly determined by their clinical characteristics, but 
a large-scale molecular profiling study has revealed that 
there is significant heterogeneity in cancer driver genes 
and pathways among tumor types and even histological 
subtypes. Many common tumors have been thoroughly 
defined by multi-omics analysis and characterization of 
genetic determinants of tumor behavior and outcome, 
leading to the development of personalized therapies [13, 
14]. Despite the recent progress, information on genetic 
features, molecular subtypes, and therapeutic targets is 
still limited for PTMC. Therefore, a complete investiga-
tion of the molecular profile of PTMC is urgently needed, 
which will have significant implications for diagnosis and 
intervention.

In this study we profiled, to our knowledge, the first 
and largest Papillary Thyroid Microcarcinoma Exome 
and Transcriptome Atlas (PTMETA), to elucidate their 
transcriptomic and genomic features that may alter the 

therapeutic options available to cancer patients. Surpris-
ingly, integrated analyses of multi-omic data revealed 
genomic and transcriptomic features of PTMC and iden-
tified a unique subgroup with distinct biology and clinical 
behavior, which in turn may provide a way for individual-
ized intervention.

Methods
Biospecimen collection, pathological assessment, 
and public data processing
This retrospective study was approved by local ethical 
committees (Tongren Hospital-Shanghai Jiao Tong Uni-
versity School of Medicine), and written informed con-
sents were obtained from all patients. A total of 64 PTMC 
patients were recruited among the 128 samples stored 
into the frozen tissue biobank of the Tongren Hospital-
Shanghai Jiao Tong University School of Medicine from 
2018 to 2019. The tissue samples were removed from the 
body in the operating room and then cut into 5 mm-long 
pieces on a sterile curved disc. The necrotic and calci-
fied regions were carefully removed [15]. Immediately 
after thyroidectomy, the specimens were flash-frozen in 
liquid nitrogen and stored in the biobank. TNM stage of 
the disease was defined by pathologists according to the 
8th AJCC/UICC staging system. The normal ranges for 
serum levels of thyroid peroxidase antibody (TPOAb) 
and thyroglobulin antibody (TgAb) were 0–4.1  IU/mL 
and 0–9 IU/mL. If the serum level of the thyroid antibody 
was over the upper limit, the status was termed positive. 
PTMETA patients’ demographic and clinical information 
are shown in Additional file 2: Table S1.

Somatic mutation data, copy number variation, fusion 
gene data, RNA-sequencing (RNA-seq) counts, and 
clinicopathological data for 28 PTMC-TCGA (tumor 
size ≤ 10  mm) samples were acquired from Genomic 
Data Commons (https://​portal.​gdc.​cancer.​gov), Tumor 
Fusion Gene Data Portal (https://​www.​tumor​fusio​ns.​
org/), R package “TCGAbiolinks (v.2.20.1)” [16], and 
Memorial Sloan Kettering Cancer Center cBioPortal 
(http://​www.​cbiop​ortal.​org/​public-​portal/​study.​do?​can-
cer_​study_​id=​thca_​tcga). In addition, RNA-seq counts 
and survival data of 331 patients with early stage PTC 
(stage I and stage II) were downloaded for subsequent 
prediction model validation. TNM stage was redefined 
according to the 8th AJCC/UICC staging system. 28 
PTMC-TCGA patients’ demographic and clinical infor-
mation are shown in Additional file 2: Table S2.

DNA and RNA isolation, quantification, and qualification
DNA from the tumor and matched adjacent normal tis-
sue samples was extracted with the QIAGEN DNA Tissue 
Extraction Kit according to the manufacturer’s proto-
col, which was then quantified using the Qubit HS DNA 

https://portal.gdc.cancer.gov
https://www.tumorfusions.org/
https://www.tumorfusions.org/
http://www.cbioportal.org/public-portal/study.do?cancer_study_id=thca_tcga
http://www.cbioportal.org/public-portal/study.do?cancer_study_id=thca_tcga
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Assay kit and Qubit 2.0 fluorometer (Life Technologies 
Inc). RNA from the tumor and matched adjacent normal 
tissue samples was extracted using the QIAGEN miRNe-
asy Mini Kit with a QIAcube, according to the manu-
facturer’s protocol. Total RNA was quantitated using 
Nanodrop 2000 Spectrophotometer, and the LabChip 
GX Touch HT nucleic acid analyzer was used to confirm 
RNA integrity. For DNA, only samples with a concentra-
tion of at least 100.0  ng/µL were used for sequencing. 
For RNA, only samples with a concentration of at least 
100.0 ng/µL and an RNA integrity number (RIN) number 
greater than 7 were included for sequencing.

DNA‑sequencing libraries
The SureSelectXT Human All Exon V6 (Agilent Tech-
nologies Inc., USA) was used to create DNA libraries 
from 50 ng of genomic DNA, according to the manufac-
turer’s instructions. This procedure targets 58 Mb of the 
genomic region, which includes 99% of coding regions 
in addition to 5′ and 3′-untranslated region sequences. 
The Illumina HiSeq3000 platform (2 × 150 bp paired-end 
reads) was used to sequence WES libraries (64 tumor/
matched adjacent normal tissue sample pairs).

RNA‑sequencing libraries
The TruSeq Stranded Total RNA Sample Prep Kit (Illu-
mina Inc., USA) was used to construct RNA libraries 
from 550 ng of total RNA, according to the manufactur-
er’s instructions. The LabChip GX Touch HT nucleic acid 
analyzer was used to examine the RIN quality of isolated 
total RNA. The Illumina HiSeq3000 platform (2 × 150 bp 
paired-end reads) was used to sequence RNA-seq librar-
ies (64 tumor/matched adjacent normal tissue sample 
pairs).

Whole exome sequencing processing
Trimmomatic (v.0.39) [17] was used to filter the raw 
sequencing reads for low-quality reads and adapter 
regions. Then sequencing reads were aligned to the 
Human Genome Reference Consortium build 38 
(GRCh38) using BWA (v.0.7.17, BWA-mem). We used 
the ‘Picard’ workflow (http://​broad​insti​tute.​github.​io/​pic-
ard) to combine data from multiple libraries and flow cell 
runs into a single BAM file per sample. In the following 
analyses, only reads that were uniquely aligned and de-
duplicated were used. Realignment and base quality score 
recalibration were performed using the Genome Analy-
sis Toolkit 4 (GATK4, V.4.1.4.1) [18]. All sites potentially 
containing small insertions or deletions in either tumor 
or matched adjacent normal tissue were realigned using 
GATK4. Sample identities were verified by determining 
the concordance of the genotypes using GATK4 Haplo-
typeCaller. The actual match will typically have upwards 

of 95% concordance between samples from the same 
individuals. A total of 64 tumor-normal pairs of samples 
were included in the downstream analysis.

RNA‑seq processing
To ensure data consistency and reproducibility, the raw 
reads were preprocessed using Trimmomatic (v.0.39) [17] 
to remove low-quality sequences and disjunction con-
tamination, resulting in high-quality sequences (clean 
reads), and all subsequent analyses were based on clean 
data. Using a two-pass approach STAR (v.2.4.0) [19], 
clean RNA-seq reads were aligned to the GRCh38.d1.vd1 
reference genome with GENCODE v22 annotation. 
Gene-level aligned fragment counts were generated using 
RSEM (v.1.2.28) [20].

Mutation calling
To create the panel of normals (PoNs), we first used the 
64 matched adjacent normal tissue samples from this 
study and deleted any mutation with a corresponding 
alternate allele present in > 1 PoN samples. For SNVs, 
we used positions that are called by GATK4 Mutect2 
(v.4.1.4.1) [18]. For mutation calling, a minimum of five 
variant-containing reads and VAF ≥ 0.04 in the tumor 
were required. Any indel found in more than 1 PoN sam-
ple was eliminated. Variant call format (VCF) files were 
annotated with ANNOVAR [21]. The mutation data of 
the TCGA cohort was in Annotated Somatic Mutation 
format, and the workflow type is “MuTect2 Annotation”. 
The R package “maftools” (v.2.6.05) was used to visually 
analyze the mutation annotation format (MAF) file [22].

Tumor mutation burden and mutational signatures
Tumor mutation burden (TMB) was defined as the total 
number of SNVs and Indels within exonic regions. To 
calculate the TMB per megabase (Mb), the total number 
of mutations counted is divided by the size of the cod-
ing region in a targeted territory (58  Mb for PTMETA 
and 38  Mb for TCGA [23]). The mutational signatures 
that were present in the samples were identified using 
the R package “musicatk” (v.1.2.0) [24]. COSMIC v2 SBS 
signatures were predicted using the NMF-based pre-
diction approach. When the reconstruction error was 
minimized, 10 rounds with a random seed of 12345 were 
used to find the optimal number of output signatures (k, 
candidate range from 2 to 5). Finally, the reconstruction 
errors were minimal when we used k = 4 for PTMETA 
and k = 5 for TCGA.

Somatic CNV detection
We analyzed sequencing coverage and copy number 
in aligned sequencing reads from targeted amplicon 
sequencing of the PTMETA tumor and matched adjacent 

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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normal tissue samples using the software Sequenza 
(v.2.1.2) [25]. Each cohort’s significantly amplified and 
deleted regions were identified using the GISTIC2 
(v.2.0.23) [26] algorithm. Output segmentation from 
Sequenza (PTMETA) and masked copy number segment 
from TCGA were used as the input for GISTIC2. Specifi-
cally, the Seg.CN of PTMETA required by GISTIC2 was 
calculated with the depth.ratio estimation from Sequenza 
as Seg.CN = log2 (2 × depth.ratio) – 1. To find recurrently 
amplified or deleted genomic regions, the GISTIC2 was 
run with the following modified parameters: -ta 0.2 -td 
0.2 -js 100 -broad 1 -brlen 0.7 -conf 0.95 -genegistic 1 
-savegene 1. Chromosomal arms were deemed changed 
in chromosome arm level analysis if at least 60% of the 
arm was lost or gained with a relative log2-transfomred 
copy number change > 0.10. Significant peaks were 
defined as regions with q < 0.25 and were annotated with 
CGC (v.85).

Fusion detection and reverse transcription PCR
We utilized STAR-Fusion (v.1.6.0) (github.com/STAR-
Fusion) [27] to find gene fusions from RNA-seq data, 
which identifies fusion transcripts and publishes all sup-
porting data discovered during alignment. FusionInspec-
tor (v.2.8.0) [28] results that assist in fusion transcript 
detection by doing a supervised analysis of fusion predic-
tions, aiming to recover and re-score evidence for such 
predictions were used to reduce false-positive fusions. 
Any fusion couple including the mitochondrial or HLA 
gene partner, involving two immunoglobulin gene seg-
ments, and annotated as having been found in normal 
RNA-seq data sets was filtered. All fusion genes discov-
ered by STAR-Fusion in normal samples were merged 
into a PoN to remove fusion genes found in those sam-
ples. The corresponding fusion was deleted if a fusion 
breakpoint from a tumor sample was discovered in the 
PoN. Finally, fusion candidates with less than 0.1 fusion 
fragments per million total (FFPM) were considered 
unsupported and discarded. PCR with reverse tran-
scription was also used to confirm the fusion genes that 
resulted. cDNA was synthesized from 300  ng of RNA 
using SuperScript II reverse transcriptase (Life Technolo-
gies) according to the manufacturer’s instructions.

Detection of significantly mutated genes
We adopted previously known methods to find driver 
mutations and genes [29]. As mentioned in ‘Mutation 
calling’, we utilized the classic GATK toolbox to call 
mutations and annotated mutations using ANNOVAR. 
The MAF was examined to discover significantly mutated 
genes (SMGs) after filtering for artifacts and establish-
ing a final set of mutations. Based on 64 samples, the 

MutSigCV (v.1.41) [30] algorithms were used to achieve 
this. A cut-off value of q < 0.10 was utilized for MutSigCV.

Differentially expressed genes analysis and gene set 
enrichment analysis
To evaluate gene expression levels and discover differen-
tial gene expression, the raw read counts were normal-
ized with DESeq2 (v.1.30.1) [31]. Differentially expressed 
genes (DEGs, genes with at least ten samples displaying 
nonzero counts) by comparing tumors against matched 
normal samples were identified using an FDR < 0.05 and 
a fold-change threshold of at least 2. Gene Set Enrich-
ment Analysis (GSEA) was performed using the R pack-
age “clusterProfiler” (v.4.1.4) [32]. Differential expression 
analysis outputs of DESeq2 (tumor vs. normal) were 
used to generate the ranked list file (ranked by (–log10[p 
value])/[sign of log2FoldChange]). Pathways and terms at 
FDR < 0.05 and|normalized enrichment score (NES)|> 2 
were considered statistically significant.

Expression‑based unsupervised clustering
The normalized counts obtained from DESeq2 from two 
cohorts were utilized to identify PTMC clusters with 
the unsupervised clustering method single-cell con-
sensus clustering (SC3) by using the R package “SC3” 
(v.1.18.0) [33]. To determine the optimal number of 
genes in SC3, we tested the clustering findings by select-
ing genes based on the standard deviations (SD) with the 
top 1000, 2000, 3000, 4000, and 5000 genes. An appro-
priate parameter k was tested from 2 to 5 iteratively. We 
determined the ideal k and SD top genes number using 
three SC3 results: silhouette score, consensus matrix, 
and cluster-specific genes. Finally, the average silhouette 
scores were the highest when we chose the SD top 5000 
genes and k-means = 2 for PTMETA and SD top 2000 
and k-means = 2 for TCGA (Additional file 2: Table S4). 
Marker genes in each cluster were identified by SC3 with 
the adjusted p-value < 0.05. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis of marker genes 
in each cluster was carried out with default parameters 
of the R package “clusterprofiler” [34]. The NMF method 
from the R package “CancerSubtypes” (v.1.18.0) [35] was 
also utilized to get more reliable clustering subgroup 
results. The optimal number of genes and k were deter-
mined with the value of average silhouette width, and 
then genes and k were the same with SC3 (Additional 
file 2: Table S4).

Subclass mapping of RNA subgroups
An unsupervised subclass mapping method (SubMap, 
v3.0) [36] was utilized to find correspondence or com-
monality of subgroups from the two cohorts to compare 
the RNA subgroups discovered from both cohorts. On 
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the GenePattern online platform, the normalized counts 
using DESeq2 from two cohorts were utilized for Sub-
Map analysis with default settings and a random seed of 
12345. Bonferroni adjusted p < 0.05 was used to deter-
mine whether any correspondences were significant.

Immune microenvironment characterization
To assess the characteristics of the immune microenvi-
ronment, the expression data normalized using DESeq2 
and followed by log transformation was used. To increase 
the stability of the conclusion, the immunological land-
scape of several subgroups was examined using four 
immune-related algorithms. The presence of immune 
cell infiltration in tumor samples was determined using 
the R package “ESTIMATE” (v.1.0.13) [37], as well as 
with gene set variation analysis (GSVA) using the com-
bined immune cell gene sets from Bindea et  al. [38]. 
The relative abundance of immune cell populations was 
then calculated using the R package “immunedeconv” 
(v.2.0.4) [39], which allows the community to perform 
integrated deconvolution using several approaches such 
as EPIC [40] and CIBERSORT [41]. To further evaluate 
whether RNA subgroups would have different responses 
to immune therapy, we also scored the immune features 
predictive of checkpoint inhibitor immunotherapy with 
GSVA using IFN-γ related genes from Ayers et al. [42], as 
well as compared the expression levels of PD1 (PDCD1), 
PDL1 and CTLA4. The GSVA was processed using the R 
package “GSVA” (v.1.0.13) [43].

Evaluation of the relationship of genomic, transcriptomic, 
and clinical features
Pairwise correlations of all features including SMGs, 
fusion genes, RNA subgroups, and clinical features were 
investigated using a variety of statistical tests. Wilcoxon 
rank-sum test was used to determine the significance for 
pairs of continuous variables. Fisher’s exact test was used 
to compare pairs of categorical variables. Only correla-
tions with p < 0.10 were displayed in Fig.  5a. The driver 
mutation genes, fusion genes, and top 100 marker genes 
of each transcriptomic subgroup were interrogated with 
STRING (https://​string-​db.​org/​cgi/​input.​pl) [44] to build 
the network interaction. Cytoscape (v.3.7.2) [45] was used 
to construct and visualize the network. The number of 
nodes in the network symbolizes genes, while the edges 
reflect interactions between genes. The number of edges 
was utilized as a benchmark for the significance of the 
driver genes because a higher number of edges indicates 
a bigger number of genes involved with their function 
[44]. Finally, we compared and analyzed the expression 
levels of related genes in different variation states of hub 
driver genes to determine the relationship between them.

Prediction model for molecular signature
The expression data from the PTMETA and TCGA 
cohorts were normalized with DESeq2 and followed 
by log transformation. The batch effect was adjusted by 
performing the ComBat function in the R package “sva” 
(v.3.46.0) [46]. The LASSO logistic regression [47] was 
used to construct a prediction model for molecular sig-
natures in PTMETA. We performed a tenfold cross-val-
idation to yield the optimal of regularization parameter 
(lambda) minimizing the sum of least square plus shrink-
age penalty by using the R package “glmnet” (v.4.1–6) 
[48]. The model predicts inflammatory signature versus 
non-inflammatory signature using a risk score. Genes 
with nonzero coefficients were selected to calculate the 
risk score. The risk score was calculated using the fol-
lowing formula: risk score = expression level of gene 1 
* c1 + expression level of gene 2 * c2 + … + expression 
level of gene n * cn, where c represents the coefficient. 
The LASSO model was trained in the PTMETA cohort, 
and its performance was evaluated using the area under 
the receiver-operating-characteristics (ROC) curve 
(AUC) [49]. The risk score cut-off point was determined 
based on Youden’s index provided in the output of the 
ROC analysis [50]. The prediction model was tested in 
the PTMC-TCGA (28 patients) and Early-Stage-PTC-
TCGA (ESPTC-TCGA; Stage I and Stage II; 331 patients) 
cohorts. To check the model validity, we compared the 
characteristics of the tumor immune microenvironment 
between the two signatures using the method called 
“Immune microenvironment characterization”. For the 
two signatures, we also constructed their K-M survival 
curves and compared 5  year progression-free survival 
(PFS) rates [51]. K-M survival curves coupled with Log-
rank test were performed using the R packages “survival” 
(v.3.4–0) and “survminer” (v.0.4.9).

Quantification and statistical analysis
All analyses were performed using R software v4.0.3 
(https://​cran.r-​proje​ct.​org/). Wilcoxon rank-sum test 
was used to compare the distributions of continuous 
measurements between two groups. Fisher’s exact test 
was used to assess the enrichment of mutations in a 
given gene as compared to the background mutation 
rate. Chi-square test was used to assess the enrich-
ment of mutation signatures in each cohort. Nominal 
p-values were reported throughout. Differential gene 
expression, GSEA enrichment analyses, and KEGG 
analyses (tumors & normals; C1 & C2) were subjected 
to multiple testing adjustments using the Benjamini–
Hochberg False Discovery Rate method. With outliers 
not indicated, all box and whiskers plots in the main 
and supplemental figures were generated with boxes 

https://string-db.org/cgi/input.pl
https://cran.r-project.org/
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representing the 25th percentile, median, and 75th 
percentile, and whiskers displaying the maximum and 
minimum values within 1.5  times the inter-quartile 
range from the border of the box. Unless otherwise 
noted, a p-value < 0.05 was considered statistically 
significant.

Results
Study population and sequencing results
WES data and RNA sequencing data on 64 pairs of tumor 
and matched adjacent normal tissues that were recruited 
from 2018 to 2019 were shown in Fig. 1a and Additional 
file 2: Table S1. To assess racial differences in molecular 
profiles, we also downloaded and processed the exome 
and RNA-seq data of 28 PTMC European patients from 
TCGA using the same analytical procedures (Additional 

Fig. 1  Molecular landscape of the PTMETA cohort. Each column represents an individual tumor (n = 64). (a) The top panel shows clinical features, 
including TgAb status, TPOAb status, TNM, stage, TI-RADS, histological type, tumor size, gender, and age, as per the color key. Each subsequent panel 
displays a specific molecular profile; (b) SNVs and indels per patient; (c) Mutated gene name, gene-sample matrix, and prevalence of somatic point 
mutations; (d) Fusion gene name, gene-sample matrix, and prevalence of gene fusion events; (e) SCNV segments per patient
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file  2: Table  S2). PTMC patients in the TCGA cohort 
had larger tumor size than those in the PTMETA cohort 
(Additional file  2: Table  S3). In terms of age, clinical 
stage, and other clinical characteristics, the two cohorts 
were generally comparable.

With Mutect, 3944 single-nucleotide variants (SNVs) 
and 714 insertions/deletions (indels) were discovered 
in the PTMETA cohort (Fig.  1b). Across the PTMETA 
cohort, the median TMB was 0.78 per megabase (Mb), 
much higher than that for the TCGA cohort (median 
0.33 per Mb) (Fig. 2a).

Driver genes
With a larger sample size, we aimed to identify driver 
genes, especially those rare drivers in the PTMETA 
cohort. Using the MutSigCV method, we identified 12 
drivers at an FDR of 0.10 (Fig.  1c). From the RNA-seq 
data, we detected 8 gene-to-gene fusions and validated 
9 out of 19 events using Sanger sequencing (Fig. 1c and 
Additional file 1: Fig S1).

The driver mutations in the PTMETA cohort were 
BRAF mutations (70.31% of tumors), followed by 
PHLPP1 (12.50%), MUC4 (10.93%), NKX2-3 (7.81%), AFP 
(6.25%), SOX1 (6.25%), GPR6 (4.69%), KRT10 (4.69%), 
SP8 (4.69%), PRAME17 (3.13%), GTF2H3 (1.56%), and 
DCTD (1.56%) mutations (Fig. 1c). We also found fused 
genes including RN7SL1 (7.81%), RET (6.25%), IGH@-
ext (4.69%), BRAF (3.13%), TG (3.13%), TPTE2 (3.13%), 
MAPK1 (1.56%), and POR-IFRD1 (1.56%) (Fig.  1d). 
Interestingly, when comparing driver genes across the 
cohorts, apart from BRAF, MUC4, and RET, the other 17 
genes were present only in the PTMETA cohort, while 
NRAS mutation common in TCGA was absent in this 
cohort (Fig.  2b). All BRAF mutations in the PTMETA 
were V600E substitutions, whereas 14 out of 16 (87.50%) 
in TCGA were V600E substitutions (Additional file 1: Fig 
S2). The hallmark fusion gene RET showed little differ-
ences between PTMETA and TCGA cohorts (4.69% ver-
sus 7.14%, Fig. 2b).

Somatic copy‑number variations
Using Sequenza [25], we detected 1349 copy number 
gains and 591 losses across the PTMETA (Fig.  1e). At 
the chromosomal level, frequent chromosomal deletions 
of Chr. 1p, 7p, 7q, 8q, 11p, 14q, 16p, and amplifications 

of 3p, 14q, 16p, and 20q were the major features of the 
PTMETA cohort using GISTIC2.0 algorithm[26], and the 
PTMETA cohort had a higher degree of arm-level than 
the TCGA cohort (Fig. 2c and Additional file 1: Fig S3). 
We also found some deletions containing reported tumor 
suppressor genes (e.g., TNFRSF14 on 1p36, RECQL4 on 
8q24, NTHL1 on 16p13, TSC2 on 16p13, and AXIN1 on 
16p13) and, interestingly, they were not found in TCGA 
(Fig. 2c).

Mutational signatures
In the integrated analysis of mutational signatures of 
PTMETA, we identified four principal mutational sig-
natures, Signature A—Signature D, which were similar 
to COSMIC signatures 5 (Unkown, clock-like and cor-
relating with age), 2 (APOBEC), 1 (Age), and 20 (Defec-
tive DNA mismatch repair), respectively (Fig.  2d). We 
also discovered signatures 16 (Unkown), 3 (Defective 
homologous recombination-based DNA damage repair), 
2 (APOBEC), 1 (Age), and 6 (Defective DNA mismatch 
repair) in the TCGA cohort (Fig.  2e). The proportions 
of signatures differed between the cohorts (Fig.  2F), 
indicating different exposure as well as tumorigenic 
mechanisms.

Differential gene expression analysis between tumor 
and matched adjacent normal tissue
Transcriptomic characteristics of PTMC remain largely 
unknown. Here, we conducted whole-genome RNA 
sequencing on 64 pairs of tissue samples in PTMETA to 
identify DEGs between PTMC and matched normal tis-
sues. We also compared our sequencing results to the 
transcriptomes of 28 pairs of PTMC and adjacent nor-
mal tissues in TCGA. PTMETA data showed 7880 DEGs, 
of which 6419 were upregulated and 1461 were down-
regulated (Fig. 3a and Additional file 2: Table S5). TCGA 
presented 5422 DEGs, including 2845 upregulated and 
2577 downregulated genes (Fig. 3b and Additional file 2: 
Table  S6). There were 917 upregulated genes and 1025 
downregulated genes which were shared by both cohorts 
(Fig. 3c, d). By GSEA, we discovered that some pathways 
were activated in both cohorts, such as the epithelial-
mesenchymal transition and coagulation, but several 
pathways were unique in each of the cohorts (Figs. 3e, f ). 

(See figure on next page.)
Fig. 2  Comparison of genomic landscape between the PTMETA cohort and the TCGA cohort. (a) Distribution of mutation burdens in each cohort. 
The mutation burden calculated from a tumor-normal pair is represented by each dot. The Wilcoxon rank-sum test was used to calculate the 
p-value; (b) Gene-level alteration frequencies in the PTMETA and TCGA; (c) Significantly recurrent somatic CNAs in genomic regions; (d) Mutation 
contributions of the signatures from de novo decomposition by the NMF algorithm and cosine correlation of the signatures with the 30 COSMIC 
mutational signatures (v2) from the PTMETA cohort; (e) Mutation contributions of the signatures from de novo decomposition by the NMF 
algorithm and cosine correlation of the signatures with the 30 COSMIC mutational signatures (v2) from TCGA cohort; (f) The proportion of mutation 
signatures. The Chi-square test was used to calculate the p-value, which was based on the number of mutation signatures in each cohort
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Fig. 2  (See legend on previous page.)



Page 9 of 19Li et al. Journal of Translational Medicine          (2023) 21:206 	

It is interesting to note that, in comparison with TCGA, 
PTMETA had more immune-related pathways activated.

A new inflammatory subgroup in the PTMETA
Previously, unsupervised clustering analysis of TCGA 
transcriptomes identified two major expression clusters 
in the PTC: BRAF-like and RAS-like [11]. In this study, 
we applied the unsupervised clustering method SC3 to 
analyze PTMETA and PTMC-TCGA transcriptomes. In 
both cohorts, the SC3 algorithm suggested two groups as 
the best clustering solutions (Additional file 2: Table S4).

Based on the top 5000 most variable genes, 64 patients 
in PTMETA were classified into two subgroups: 38 

(59.38%) into cluster 1 (C1) and 26 (40.62%) into cluster 2 
(C2). Through the SC3 method with an adjusted p-value 
less than 0.05, 285 marker genes for C1 and 257 marker 
genes for C2 were identified (Additional file 2: Table S7). 
Each subgroup’s top 20 marker genes were visualized in a 
heatmap (Fig. 4a). According to enrichment analysis, C1 
marker genes were enriched in the adherens junction and 
proteoglycans, while C2 marker genes were enriched in 
antigen processing and presentation, autoimmune thy-
roid disease, and other inflammation-related pathways. 
These two subgroups were named ‘PTMC-proliferation’ 
(PTMC-Pro) and ‘PTMC-inflammatory’ (PTMC-Inf), 
respectively, based on the roles of the marker genes in 

Fig. 3  The transcriptome landscape of the PTMETA and TCGA cohort. Volcano plots of differentially expressed genes (DEGs) in the (a) PTMETA 
cohort and (b) TCGA cohort. Up- and down-regulated DEGs are plotted in red and blue, respectively; Venn diagrams representation of (c) 
upregulated DEGs in the two cohorts and (d) downregulated DEGs in the two cohorts; The Gene Set Enrichment Analysis (GSEA) terms in the (e) 
PTMETA cohort and (f) TCGA cohort
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each subgroup. Twenty-eight PTMC patients in TCGA 
were classified into two subgroups based on the top 2000 
most variable genes: 21 (75.00%) into cluster 1 (C1) and 
7 (25.00%) into cluster 2 (C2). The top 20 marker genes 
for each subgroup were visualized in a heatmap, with 

C1 enriched in the adherens junction and C2 enriched 
in the oxygen metabolic related pathway (Fig.  4b). So 
‘PTMC-proliferation’ (PTMC-Pro) and ‘PTMC-metab-
olism’ (PTMC-Met) were the names given to these two 
subgroups. We noticed that PTMC-Pro was mostly 

Fig. 4  Transcriptomic clusters in the PTMETA and TCGA cohorts. Heatmaps depicting the expression of the top 20 AUROC-ranked marker genes 
in each subgroup of the (a) PTMETA cohort and (b) PTMC-TCGA cohort. The main enriched KEGG terms of all marker genes in each subgroup 
are listed on the right; (c) Subclass mapping of subgroups found in the PTMETA and PTMC-TCGA cohort. Significant correspondence between 
subgroups is highlighted in blue with Bonferroni adjusted p-values; (d) Comparison of the tumor immune microenvironment across different 
subgroups in the PTMETA cohort using two methods: ESTIMATE immune scores, GSVA using Bindea et al.’s combined immune gene set; (e) 
Comparison of the immune cell fraction distinguished by the different subgroups; (f) Comparison of IFN-γ scores, PDL1, PDCD1, and CTLA4 
expression. p-values from the Wilcoxon rank-sum tests. PTMC-Pro: PTMC-proliferation; PTMC-Inf: PTMC-inflammatory; PTMC-Met: PTMC-Metabolism
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BRAF-like and PTMC-Met was RAS-like in TCGA, con-
firming the classification results from the previous analy-
sis [11]. In comparison to the subgroups across cohorts, 
PTMC-Pro cluster of the two cohorts was strikingly simi-
lar, but the new subgroup PTMC-Inf was unique to the 
PTMETA cohort (Fig. 4c).

Given the differences in immune-related pathways 
between PTMC-Inf and PTMC-Pro in the PTMETA 
cohort, we analyzed the immune activity and immune 
cell types for the two clusters, using four different tran-
scriptome-based computation algorithms: ESTIMATE 
[37], GSVA using gene sets for immune cells [38], abun-
dances of 7 immune cell inferred by EPIC deconvolution 
analysis [40], and abundances of 22 immune cell subtypes 
inferred by CIBERSORT deconvolution analysis [41]. 
We first found that the PTMC-Inf patients had consider-
ably higher immune score than the PTMC-Pro patients 
by the ESTIMATE algorithm (Fig.  4d). The GSVA algo-
rithm checked the above results and found higher Bindea 
score which is related to immune (Fig. 4d). While there 
were more abundant T-cell subtypes in PTMC-Inf than 
PTMC-Pro by EPIC (CD4 + T cell and CD8 + T cell, 
p < 0.001; Fig. 4e) and CIBERSORT (T cells CD4 memory 
activated, p < 0.001; T cells CD8, p = 0.002; Additional 
file 1: Fig S4), we also found elevated expression of PDL1, 
PD1, CTLA4, and IFN-γ in PTMC-Inf, suggesting that 
patients in PTMC-Inf may be sensitive to immune check-
point inhibitor (ICI) therapy (p = 0.003, < 0.001, < 0.001, < 
0.001, respectively; Fig. 4f ).

Integrative analysis of multiple data layers in the PTMETA
We decided to present the association between clinical 
features and molecular features with a higher threshold 
(p < 0.10) in order to find more potential clinically rel-
evant biomarkers. Correlating molecular features with 
clinical variables in PTMETA, we found that Indel hap-
pened more frequently in stage II (p = 0.057; Fig.  5a). 
BRAF and GPR6 mutations were more common in older 
patients, whereas BRAF fusions were more common in 
younger patients (p = 0.027, 0.059, 0.064, respectively; 
Fig. 5b). In addition, RN7SL1 fusions were also linked to 
lymph node metastasis, and TG fusions were related to 
follicular-variant tumors (p = 0.053, 0.076, respectively; 
Fig. 5c). Females showed larger copy number losses, and 
PTMC-Inf was enriched in females (p = 0.049, 0.078, 
respectively; Fig. 5d). It is important to note that TPOAb-
positive patients and TgAb-positive patients were only 
present in the PTMC-Inf (p = 0.001, 0.003, respectively; 
Fig. 5e).

We also evaluated the relationship between genomic 
features and transcriptome clusters in PTMETA (Fig. 5f ). 
AFP mutations, IGH@ext fusions, TG fusions, and 
TPTE2 fusions occurred only in PTMC-Inf, while SP8 

mutations and BRAF fusions were only in PTMC-Pro. 
BRAF mutations were enriched in PTMC-Pro (p = 0.005; 
Fig. 5g), while AFP mutations and IGH@ext fusions were 
enriched in PTMC-Inf (p = 0.024, 0.062, respectively; 
Fig. 5h, i). At the same time, network analysis found that 
AFP was associated with several immune-related genes 
in the PTMC-Inf (Additional file 1: Fig S5a, b), and sev-
eral IGH@ext-related genes were also highly expressed 
in this subgroup (Additional file  1: Fig S5c), suggesting 
that variations of these two genes may lead to the activa-
tion of immune characteristics in the PTMC-Inf. Moreo-
ver, PTMC-Inf had more copy number losses (p = 0.062; 
Fig. 5j).

Establishment and validation of a prediction model 
for molecular signatures
Since there were notable variations in immunother-
apy responses between subtypes, we wondered if sub-
type marker genes could serve as indicators of precise 
immune intervention. Based on the expression profiles of 
542 marker genes for molecular signatures in PTMETA, 
we used the LASSO logistic regression analysis to build a 
prediction model for molecular signatures. In the LASSO 
regression, the optimal λ was obtained when the binomial 
deviance reached the minimum value (Fig.  6a). There 
were 17 gene markers in the final multinomial regres-
sion model. We used these markers and their coefficients 
to generate a risk score for each patient in PTMETA 
(Fig. 6b). An optimal cutoff was used for the risk score to 
classify patients into two groups of molecular signatures, 
inflammatory versus non-inflammatory subtypes. To 
assess its validity in PTMETA, we compared the model-
generated classification with the initial unsupervised 
clusters to determine its validity in PTMETA and found 
a good concordance between the two methods on sub-
group classification (AUC = 1) when using a cutoff value 
at 0.494 based on the Youden index [52] (Fig. 6c). We cal-
culated the risk score for patients in the PTMC-TCGA 
cohort to further confirm the effectiveness of our model 
and demonstrate that PTMC-inflammatory patients also 
exist in other ethnic groups, such as the European popu-
lation in TCGA. Of the 28 patients, 9 were classified as 
inflammatory and 19 were non-inflammatory using the 
same cut-off value. To evaluate the clinical significance 
of our classification, we compared the characteristics 
of tumor immune microenvironment between the two 
groups of PTMC-TCGA patients and discovered that 
patients with inflammatory signature had higher immune 
scores (Fig. 6d), more CD8 + T cells (Fig. 6e), and higher 
expression of immune checkpoint proteins (Fig. 6f ), indi-
cating that the prediction model may classify patients 
with different immunity. The PTMC-TCGA cohort was 
then subjected to a survival analysis, and although there 
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Fig. 5  Correlation analysis of clinical, genomic, and transcriptomic features in the PTMETA cohort. (a – e) Correlation between molecular and 
clinical features in the PTMETA cohort. Only correlations with significant (p < 0.10) differences calculated by Wilcoxon rank-sum tests or Fisher’s exact 
tests are shown; (f) Phenotypes of transcriptomic subgroups. The top rows indicate the cluster assignment of patients. The following rows show 
the clinical, immune features, alterations, fusion genes, number of drivers, TMB, copy number gains, copy number losses, and mutation signatures, 
respectively; (g –h) Genomic features of transcriptomic subgroups. Only correlations with significant (p < 0.10) differences calculated by Wilcoxon 
rank-sum tests or Fisher’s exact tests are shown. PTMC-Pro: PTMC-proliferation; PTMC-Inf: PTMC-inflammatory
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was no statistically significant difference in PFS between 
the two groups, the 5 year PFS rate was lower in patients 
with inflammation than in patients without inflamma-
tion (88.89% & 100%; Log-rank p = 0.200; Fig.  6g). We 
also performed model validation and survival analysis 
in the Early-Stage-PTC-TCGA (ESPTC-TCGA; Stage I 
and Stage II; 331 patients) cohort due to the smaller sam-
ple size of the PTMC-TCGA cohort, the lack study of 

the PTMC cohort, and the improved PFS of the PTMC 
[53]. We found that patients in the ESPTC-TCGA cohort 
predicted by the model to be subtypes of inflammation 
also showed higher immune scores (Additional file 1: Fig 
S6a), more abundant T-cell subtypes (Additional file  1: 
Fig S6b), and higher expression of immune checkpoint 
proteins (Additional file 1: Fig S6c). Log-rank test results 
indicated that inflammatory patients had significantly 

Fig. 6  A diagnostic prediction model for subgroups was developed and validated via the LASSO regression. (a) In the PTMETA cohort (n = 64), the 
determination of the optimal λ was obtained when the binomial deviance reached the minimum value, and further generated LASSO coefficients 
of the most useful marker genes; (b) Coefficients of 17 marker genes finally obtained in LASSO regression; (c) Receiver operating characteristic 
(ROC) curves and the associated areas under curves (AUCs) of the diagnostic prediction model in the PTMETA cohort; (d) Comparison of the 
tumor immune microenvironment across different immune state according to the diagnostic prediction model in the PTMC-TCGA cohort using 
two methods: ESTIMATE immune scores, GSVA using Bindea et al.’s combined immune gene set; (e) Comparison of the immune cell fraction 
distinguished by the different immune state in the PTMC-TCGA cohort; (f) Comparison of IFN-γ scores, PDL1, PDCD1, and CTLA4 expression by the 
different immune state in the PTMC-TCGA cohort. p-values from the Wilcoxon rank-sum tests; (g) Kaplan–Meier curves of PFS according to the 
diagnostic prediction model in the PTMC-TCGA cohort. p-value from the Log-rank test



Page 14 of 19Li et al. Journal of Translational Medicine          (2023) 21:206 

worse prognosis for PFS (Log-rank p = 0.034; Additional 
file 1: Fig S6d).

Discussion
To our knowledge, PTMETA is the largest multi-omics 
study on papillary thyroid microcarcinomas, and we 
found a new subgroup named PTMC-Inf with potential 
implications in immunotherapy. This finding deepens 
our understanding of the PTMC. When compared to 
the PTMC cohort in TCGA, we found that the PTMETA 
cohort had more unstable genomes manifested by 

multiple genomic alterations, as well as the activation of 
distinct immune-related pathways in the transcriptome. 
The PTMETA cohort had a unique inflammatory sub-
group that showed possible responsiveness to immune 
intervention. AFP mutations and IGH@ext fusions were 
found only in the PTMC-Inf subgroup, suggesting that 
these mutations may be used as biomarkers to predict the 
effect of the immune intervention (Fig. 7). In addition, we 
created and validated a prediction model for PTMC sub-
groups and found that inflammatory patients had a lower 
rate of 5 year PFS.

Fig. 7  Schematic plot of multi-step PTMC-Inf discovery in the PTMETA cohort. PTMC-Inf: PTMC-inflammatory
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In the present study, we found similar genomic and 
transcriptomic features between PTMETA and PTMC-
TCGA which also did not show appreciable variations 
in clinical characteristics (Additional file  2: Table  S3). 
Compared to other malignancies, PTMC in these 
cohorts displayed a low somatic mutation density [54] 
(Fig. 2a). Notably, the most common somatic changes in 
both groups were BRAF mutations, which are typically 
observed in PTC patients [55] and PTMC patients [56]. 
Additionally, BRAF fusions and RET fusions were found 
in both cohorts, and activation of epithelial to mesenchy-
mal transition (EMT) was also shown in both transcrip-
tomes, all of which are typical features of thyroid cancer 
[55, 57]. Finally, unsupervised cluster analysis revealed a 
subgroup characterized by proliferative pathway activa-
tion in both cohorts, and most of the patients in this sub-
group had BRAF mutations, which was consistent with 
the results of a previous study [11]. These observations 
support the validity of our multi-omic analysis.

Interestingly, we also made several intriguing find-
ings. First, the BRAF mutation rate was higher in 
PTMETA than in TCGA (70.3% & 57.1%, Fig. 2b), which 
was consistent with the finding of a previous study 
that also compared the mutation rates between China 
and TCGA (72.4% & 59.7%) [12]. Parvathareddy et  al. 
showed BRAFV600E mutations were detected in 45.7% 
(84/184) Middle Eastern PTMCs, which was less than 
the PTMETA cohort [58]. Iodine-rich diets or chronic 
thyroiditis were suspected to be possible reasons for high 
BRAFV600E mutations in Chinese PTC [59]. Second, it 
is interesting to note that there are several driver genes 
detected in PTMETA by WES not targeted next-gener-
ation sequencing that have not been reported in either 
PTMC-TCGA (Fig.  2b) or TCGA-PTC [11] or other 
PTMC patients [60]. Among them, PHLPP1, a tumor 
suppressor gene for various cancer types [61], has the 
second highest mutation frequency in PTMETA (12.5%). 
PHLPP1 directly dephosphorylates AKT to inhibit the 
Akt serine–threonine kinase and protein kinase C (PKC) 
signaling. All PHLPP1 mutations in this study were in-
frame deletions (Additional file  1: Fig S2), which could 
lead to functional defects. NRAS mutations were the sec-
ond highest mutated gene (7.1%) in the PTMC-TCGA 
cohort, but this high frequency was not found in the 
PTMETA cohort. NRAS mutations were less common in 
Chinese PTC (0–3%) [12], which is consistent with our 
study. While 4.7% of 431 PTMCs were found to have 
TERT gene alterations, according to de Biase et al. [62]. 
Since the TERT gene mutation lies in the promoter and 
cannot be detected by WES, we did not analyze it in 
our study. Finally, the PTMETA cohort had a high fre-
quency of CNVs. Radiation has been demonstrated in 
several studies to cause DNA replication and mismatch 

repair disorders, resulting in CNVs [63]. We also found 
that the PTMETA cohort had more mutation signature 
20 (Defective DNA mismatch repair, Fig. 2f ) than did the 
PTMC-TCGA cohort. Defective DNA mismatch repair 
leads to microsatellite instability and a high frequency of 
mutation [64]. We speculate that the difference in CNVs 
between the two cohorts is attributable to some environ-
mental factors and racial differences since there were no 
significant differences in clinical features between the 
cohorts.

We also found a group of driver genes related to immu-
nity in the PTMETA cohort, including AFP mutations, 
IGH@-ext fusions, TPTE2 fusions, and IFRD1 fusions 
(Fig.  2b). The PTMC-TCGA cohort didn’t show similar 
results (Fig.  2b). Furthermore, bioinformatic analysis of 
DEGs revealed that the PTMETA cohort had functional 
enrichment in the activation of immune-related path-
ways, supporting the finding of driver genes’ relation to 
immunity. These genes have been reported to be associ-
ated with immune responses and play distinct roles in dif-
ferent types of cancer [65–68]. With these unique genetic 
and molecular changes, our cluster analysis revealed a 
distinct subgroup of patients with activated immune cell 
signaling and interferon-γ response (Fig. 4a). By the study 
by Chen et al., we named this subgroup ‘PTMC-Inf ’ [69]. 
By causing DNA damage, inflammation can start and fos-
ter tumorigenesis in inflammation-related tumorigenesis 
[70]. Inflammation can also hasten the development of 
cancer by accelerating the growth of cancer cells, reduc-
ing their immunogenicity, and avoiding immune destruc-
tion [71]. For instance, IFN-γ upregulates the expression 
of T cell depletion, stimulates STAT3 signaling, protects 
epithelial cells from CD8 + T cytotoxic cytokinesis, and 
promotes PD-L1 on the altered epithelial cells identi-
fied by T cells [72]. The network analysis showed that 
AFP and IGH@ext genes may be the hub genes leading 
to the emergence of PTMC-Inf (Additional file  1: Fig 
S5). It has been demonstrated that AFP is particularly 
useful for predicting how responsive hepatocellular car-
cinoma patients would be to ICI therapy [65]. A search 
of COSMIC [73] showed that AFP mutations are pre-
sent in numerous cancers, including thyroid cancer, even 
though they have not been thoroughly investigated. A 
feature of chronic lymphocytic leukemia is IGH@ext 
fusions [74]. Additionally, a recent study revealed that 
individuals with colorectal cancer may have changes in 
their tumor immune microenvironment due to an Asia-
specific variation of the IGHG1 gene [75]. The antigen-
specific humoral immune responses induced by TPOAb 
and TgAb are considered to be associated with the devel-
opment and prognosis of PTC [76]. Of note, TPOAb-
positive patients and TgAb-positive patients were found 
only in the PTMC-Inf, which proves that these patients 
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did have an immune disorder. Previous studies have 
shown that cancers defined as ‘hot tumors’ (many infil-
trating T cells and high expression of PD-L1/PDCD1) 
[77] are more responsive to ICI treatment. Our analysis 
of immune cell subtypes and immune checkpoint gene 
expression revealed that the PTMC-Inf tumor shares 
the same characteristics (more infiltrating CD4 + and 
CD8 + T cells, and high expression of PDL1, PDCD1, and 
CTLA4, Fig. 4d–f). Anti-CTLA-4 or anti-PD-1 therapy is 
dependent on T-cell infiltration, hence these treatments 
may only be effective in hot tumors [78]. In clinics, the 
effects of PD-L1 inhibitors, such as pembrolizumab, on 
thyroid cancer have been actively investigated in recent 
years, but the number of patients who responded to the 
treatment was small [79], suggesting that immunother-
apy may have limited effects on the cancer [80]. This may 
also indicate that biomarkers are needed to predict which 
patients are responsive to ICI. Based on the expression 
of 17 marker genes, we could divide PTMETA patients 
into two molecular subgroups, inflammatory versus 
non-inflammatory. Further validation of the model clas-
sification in the PTMC-TCGA cohort revealed that the 
prediction model could identify patients with possible 
differences in immunity. Due to the small sample size, we 
only found that the 5 year PFS rate in the PTMC cohort 
was lower in patients with inflammation than in patients 
without inflammation. However, in a larger PTC cohort, 
we found that the survival of patients with inflamma-
tion was significantly worse than that of patients with 
non-inflammation, suggesting that patients with inflam-
mation may improve their prognosis through immu-
notherapy. In addition, although PTMC patients had 
favorable PFS, which is consistent with previous studies 
[53], we still discovered that inflammatory patients have 
a worse prognosis for PFS, whether in the small sample 
size PTMC-TCGA cohort (Fig.  6) or in the large sam-
ple size ESPTC-TCGA cohort (Additional file 1: Fig S6), 
indicating that PTMC is not homogeneous in disease 
outcomes and that some inflammatory patients may be 
responsive to immunotherapy. In addition, we found AFP 
mutations, IGH@ext fusions, TPTE2 fusions, and IFRD1 
fusion not only in Chinese PTMC but predominantly in 
the PTMC-Inf (Fig. 5e), suggesting that these characteris-
tics may be used to select patients who are responsive to 
ICI to improve the treatment response. Aside from that, 
research has shown that patients who receive immuno-
therapy early have better disease control and favorable 
prognosis [81, 82], implying that treating early-stage can-
cers like PTMC has potential benefits. As a result, ICI 
treatment for PTMC-Inf patients is biologically relevant.

One of the limitations of our investigation is the lack 
of treatment and survival data due to the short follow-up 
time, making it difficult to assess the actual value of the 

biomarkers in clinical application. In addition, although 
TCGA had survival information, the number of PTMC 
patients was too small to have enough power to find sig-
nificant differences in survival between inflammatory 
and non-inflammatory patients. Finally, bioinformatic 
analyses are not able to deeply elucidate the molecular 
mechanisms, experimental evidence is indispensable to 
further exploration.

Conclusion
Taken together, we divided PTMC patients into two sub-
types with clinicopathological features, genomic altera-
tions, gene expressions, immune microenvironment 
patterns, and immunotherapeutic responses. In addi-
tion, a molecular prediction model was proposed for 
individualized integrative assessment. These provides 
new insights into the precise intervention of PTMC. 
Our results shed light on the understanding of molecular 
signatures in PTMC and offer fresh perspectives on the 
molecular mechanism for future research and relevant 
immunotherapy in PTMC.

Abbreviations
PTMC	� Papillary thyroid microcarcinoma
TC	� Thyroid cancer
ATA​	� American Thyroid Association
AS	� Active surveillance
PTC	� Papillary thyroid cancer
PTMETA	� Papillary Thyroid Microcarcinoma Exome and Transcriptome Atlas
TPOAb	� Thyroid peroxidase antibody
TgAb	� Thyroglobulin antibody
RNA-seq	� RNA sequencing
RIN	� RNA integrity number
WES	� Whole exome sequencing
GRCh38	� Genome reference consortium build 38
GATK4	� Genome analysis toolkit 4
PoNs	� Panel of normal
VCF	� Variant call format
MAF	� Mutation annotation format
TMB	� Tumor mutation burden
Mb	� Megabase
COSMIC	� Catalogue of Somatic Mutations in Cancer
FFPM	� Fusion fragments per million
SMGs	� Significantly mutated genes
DEGs	� Differentially expressed genes
GSEA	� Gene set enrichment analysis
NES	� Normalized enrichment score
SC3	� Single-cell consensus clustering
SD	� Standard deviations
KEGG	� Kyoto Encyclopedia of Genes and Genomes
GSVA	� Gene set variation analysis
ROC	� Receiver-operating-characteristics
AUC​	� Area under the receiver-operating-characteristics curve
PFS	� Progression-free survival
C1	� Cluster 1
C2	� Cluster 2
SNVs	� Single-nucleotide variants
Indels	� Insertions/deletions
PTMC-Pro	� PTMC-proliferation
PTMC-Inf	� PTMC-inflammatory
PTMC-Met	� PTMC-metabolism
EMT	� Epithelial to mesenchymal transition



Page 17 of 19Li et al. Journal of Translational Medicine          (2023) 21:206 	

PKC	� Protein kinase C
ICI	� Immune checkpoint inhibitor

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​023-​04045-2.

Additional file 1: Fig S1. Sanger sequencing validation of the PCR 
products of 9 fusions in the PTMETA cohort, respectively. Fig S2. Lollipop 
plot of the somatic mutations of the driver genes identified in the PTMETA 
cohort (a) and TCGA cohort (b). For each driver gene, a lollipop plot was 
generated depicting all amino acid changes found along the protein (grey 
bar) with their frequencies in the PTMETA cohort and TCGA cohort (the 
height). Protein motifs were shown with coloured boxes. Fig S3. Heat map 
showing somatic CNAs with estimated actual copy numbers between the 
PTMETA cohort and TCGA cohort. Red represents amplification and blue 
represents deletion. Fig S4. CIBERSORT analysis of PTMETA samples. High-
lighted boxes indicate immune cell types that were significantly enriched 
in either PTMC-proliferation or PTMC-inflammatory relative to the other 
using a wilcoxon rank-sum test (p < 0.05). Outliers not shown. The boxes 
in box plots indicate 25th percentile, median, and 75th percentile, while 
whiskers show the maximum and minimum values within 1.5 times the 
inter-quartile range from the edge of the box. Fig S5. Identification of 
hub driver genes. a, A PPI network made up of the driver mutation genes, 
fusion genes, and top 100 marker genes for each subgroup. The PTMC-
proliferation, PTMC-inflammatory, and driving genes are represented by 
the red, green, and yellow nodes, respectively. b, The expression level of 
PTMC-inflammatory marker genes (CD4, CXCR4, IGJ, and PTPRC) associ-
ated with AFP as a function of AFP mutation type. c, The expression levels 
of PTMC-inflammatory  marker genes IGH@ext (IGHA1, IGHA2, IGHG2, 
IGHG3, IGHG4, IGHM, IGHV1-18, IGHV3-21, IGHV3-23, IGHV3-30, IGHV4-39, 
and IGHV4-59) as a function of IGH@ext fusion type. p values determined 
by the wilcoxon rank-sum test. Fig S6. The diagnostic prediction model 
for subgroups was validated using the ESPTC-TCGA cohort. a, Comparison 
of the tumor immune microenvironment across different immune state 
according to the diagnostic prediction model in the ESPTC-TCGA cohort 
using two methods: ESTIMATE immune scores, GSVA using Bindea et al.’s 
combined immune gene set. b, Comparison of the immune cell fraction 
distinguished by the different immune state in the ESPTC-TCGA cohort. 
c, Comparison of IFN-γ scores, PDL1, PDCD1, and CTLA4 expression by 
the different immune state in the PTMC-TCGA cohort. p-values from the 
Wilcoxon rank-sum tests. d, Kaplan–Meier curves of PFS according to the 
diagnostic prediction model in the ESPTC-TCGA cohort. p-value from the 
Log-rank test.

Additional file 2: Table S1. PTMETA cohort clinical data. Table S2. TCGA 
cohort clinical data. Table S3. Comparison of clinical data between 
PTMETA and TCGA. Table S4. Average silhouette width plots of the cancer 
subgroups for the PTMETA cohort and TCGA cohort. Table S5. Differ-
ential expression genes between PTMETA tumor samples and normal 
samples. Table S6. Differential expression genes between TCGA tumor 
samples and normal samples. Table S7. Maker genes in the two PTMETA 
subgroups.
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