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Abstract 

Background  Identifying predictive non-invasive biomarkers of immunotherapy response is crucial to avoid pre‑
mature treatment interruptions or ineffective prolongation. Our aim was to develop a non-invasive biomarker for 
predicting immunotherapy clinical durable benefit, based on the integration of radiomics and clinical data monitored 
through early anti-PD-1/PD-L1 monoclonal antibodies treatment in patients with advanced non-small cell lung can‑
cer (NSCLC).

Methods  In this study, 264 patients with pathologically confirmed stage IV NSCLC treated with immunotherapy 
were retrospectively collected from two institutions. The cohort was randomly divided into a training (n = 221) and 
an independent test set (n = 43), ensuring the balanced availability of baseline and follow-up data for each patient. 
Clinical data corresponding to the start of treatment was retrieved from electronic patient records, and blood test 
variables after the first and third cycles of immunotherapy were also collected. Additionally, traditional radiomics and 
deep-radiomics features were extracted from the primary tumors of the computed tomography (CT) scans before 
treatment and during patient follow-up. Random Forest was used to implementing baseline and longitudinal models 
using clinical and radiomics data separately, and then an ensemble model was built integrating both sources of 
information.

Results  The integration of longitudinal clinical and deep-radiomics data significantly improved clinical durable 
benefit prediction at 6 and 9 months after treatment in the independent test set, achieving an area under the receiver 
operating characteristic curve of 0.824 (95% CI: [0.658,0.953]) and 0.753 (95% CI: [0.549,0.931]). The Kaplan-Meier 
survival analysis showed that, for both endpoints, the signatures significantly stratified high- and low-risk patients 
(p-value< 0.05) and were significantly correlated with progression-free survival (PFS6 model: C-index 0.723, p-value = 
0.004; PFS9 model: C-index 0.685, p-value = 0.030) and overall survival (PFS6 models: C-index 0.768, p-value = 0.002; 
PFS9 model: C-index 0.736, p-value = 0.023).
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Conclusions  Integrating multidimensional and longitudinal data improved clinical durable benefit prediction to 
immunotherapy treatment of advanced non-small cell lung cancer patients. The selection of effective treatment 
and the appropriate evaluation of clinical benefit are important for better managing cancer patients with prolonged 
survival and preserving quality of life.

Keywords  Immunotherapy, Lung cancer, Clinical durable benefit, Deep-Radiomics, Clinical data, Longitudinal 
analysis, Treatment monitoring

Introduction
Immunotherapy has radically changed the therapeu-
tic paradigm in cancer, becoming the new standard for 
treating locally advanced and metastatic non-small cell 
lung cancer (NSCLC) patients [1]. Many studies have 
shown positive results in terms of improved long-term 
survival when used alone or in combination with other 
treatments [2–5], but only a small proportion of patients 
(20–50%) respond to therapy [6, 7]. Due to immunother-
apy’s unconventional response pattern, including delayed 
response or pseudoprogression, traditional approaches to 
defining response are no longer adequate. Furthermore, 
patients may experience immune-related adverse events, 
which can be life threatening [8].

It has become crucial to identify biomarkers that could 
predict long-term clinical benefit patients to monitor 
their condition over time effectively. Different biomark-
ers have been investigated, such as PD-L1 expression 
and tumor mutational burden, and their association with 
treatment response has been reported in previous studies 
with mixed results [9, 10]. Furthermore, tumor heteroge-
neity could influence the reliability of these biomarkers, 
as they depend on biopsied tissue, which cannot cover 
the entire tumor microenvironment.

The use of non-invasive image-based biomarkers has 
gained increased attention during the past few years 
because of their availability and non-invasiveness. Typi-
cally, the effectiveness of treatment has been evaluated 
using the response evaluation criteria in solid tumors 
(RECIST) [11] or its adaptation to immunotherapy (iRE-
CIST) [12]. However, these criteria are often subjective 
and do not consider changes in tumor heterogeneity.

Radiomics involves the high-throughput extraction of a 
large number of quantitative characteristics from medi-
cal imaging, which can provide complete information 
on tumor radiophenotype and microenvironment het-
erogeneity [13]. Several studies have demonstrated the 
ability of radiomics features to predict the immunother-
apy response for advanced NSCLC patients, uncovering 
characteristics that otherwise could not be identified by 
human observers [14–18]. In addition, recent advances in 
deep learning have shown that radiomics features can be 
automatically extracted using neural networks without 
human feature interaction, resulting in better prediction 

performance (deep-radiomics) [19, 20]. Most of these 
studies have focused on the development of biomarkers 
considering only baseline and first follow-up informa-
tion. However, given that tumors are heterogeneous in 
terms of both spatial heterogeneity and temporal evo-
lution, it could be beneficial to consider more temporal 
information during early treatment to understand better 
tumor response patterns.

Furthermore, integrating multimodal data, such as 
clinical and imaging data, could provide complementary 
patient- and tumor-specific information for better patient 
monitoring [21].

The present study aimed to investigate the potential 
improvements in prediction performance by integrat-
ing imaging and clinical data monitored through early 
treatment. The ability of deep learning to extract more 
complex and response-related features was also explored 
and compared with traditional radiomics. An ensemble 
model based on the integration of longitudinal radiomics 
and clinical data has been developed and validated in an 
independent test set to predict the clinical durable ben-
efit of immunotherapy in patients with NSCLC at 6 and 9 
months after the start of treatment.

Materials and methods
Datasets and patient selection
A total of 291 patients with pathologically confirmed 
stage IV NSCLC treated with anti-PD-1/PD-L1 monoclo-
nal antibodies from January 2013 to December 2021 were 
retrospectively collected at the Hospital Universitario 
Fundación Jiménez Díaz (FJD, 154 patients) and Clínica 
Universidad de Navarra (CUN, 137 patients). Their insti-
tutional review boards approved the study, and informed 
consent was collected accordingly. Inclusion criteria 
were: (a) confirmed advanced NSCLC; (b) patients were 
treated with immunotherapy as monotherapy, a combi-
nation of immuno-based agents, or in combination with 
traditional treatment such as chemotherapy or radiation 
therapy; (c) availability of clinical and epidemiological 
information; (d) patient data were not right-censored. 
Finally, 264 patients were enrolled in this study.

The institutional medical records systems were 
searched to identify those patients with imaging data. 
CT images were available for 186 patients and were 
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collected following these inclusion criteria: (a) avail-
ability of chest CT scans; (b) availability of baseline CT 
within 2 months before the start of immunotherapy. 
Exclusion criteria were as follows: (a) lung resection 
during treatment; (b) an experienced radiologist could 
not detect and segment the primary tumor in the base-
line CT; (c) poor quality image; (d) patient data were 
not right-censored. Finally, 171 patients were enrolled 
for imaging data analysis.

According to the clinical protocol, during the first 4 
months of immunotherapy, CT scans were acquired 
after every two or three treatment cycles. Conven-
tional clinical evaluations (including hemograms) were 
performed after each treatment cycle within the first 
2 months of treatment. As a result, our data included 
demographic, epidemiological, hemogram and other 
conventional clinical data from this period, at least a 
baseline CT scan and up to two follow-up CT scans.

The cohort was divided into a training set and an 
independent test set balancing the availability of base-
line and follow-up data (Fig.  1). To compare the per-
formance of the different models, 43 patients (43/171 
= 25%) with baseline imaging and clinical data were 
randomly selected as an independent test set to maxi-
mize the number of patients available to test all the 
implemented models. All remaining patients were used 
as the discovery set (n = 221). Among the independent 
test cohort patients, 40 had longitudinal imaging data, 
33 longitudinal clinical data and 32 had both longitudi-
nal imaging and clinical data (see details in Additional 
file 1: Tables S1 and S2).

Clinical endpoints
The primary endpoint of this study was the durable clini-
cal benefit defined by progression-free survival (PFS). It 
measures the time from the first cycle of immunotherapy 
to death/disease progression or last follow-up. Disease 
progression was defined based on the patient’s general 
clinical status and iRECIST criteria derived from the 
imaging evaluation. Patients with durable clinical benefit 
that had a PFS longer than 6 (PFS6) or 9 (PFS9) months 
were denominated as responders, while the others as 
nonresponders [22]. Patients with censored data 6 or 9 
months after treatment were excluded from the analysis. 
The maximum follow-up period was 48 months.

The secondary endpoint was overall survival (OS), 
defined as the time in months between the initiation of 
immunotherapy and death or censored to the last follow-
up visit for survivors.

Image acquisition and pre‑processing
All patients underwent a CT scan within 2 months before 
the immunotherapy treatment start date. When available, 
follow-up CT scans were acquired within 4 months after 
treatment (up to three temporal time points per patient). 
All CT images were acquired after contrast injection 
during a patient inspiratory breath hold, following the 
contrast-enhanced CT chest protocol. CT scans were 
reconstructed using a standard kernel. A description of 
CT parameters is available in Additional file 1: Table S3.

For each case, the primary tumor was selected as the 
target lesion. 3D tumors were identified and segmented 
by an experienced radiologist on the baseline and 

Fig. 1  Flowchart showing the inclusion and exclusion criteria considering the endpoint PFS6. Details of the number of patients in the training and 
independent test set are provided



Page 4 of 15Farina et al. Journal of Translational Medicine          (2023) 21:174 

follow-up CT images using either the syngo.via Siemens 
Healthineers software or 3D Slicer [23]. The largest lesion 
was considered if a patient had an ambiguous primary 
tumor. Follow-up CT scans were discarded if the tumor 
found in the baseline CT scan was no longer visible.

For pre-processing, Hounsfield units of all CT images 
were clipped between -1000 and 3050, and z-score nor-
malization was then applied.

Feature engineering
Radiomics analysis
Radiomics features were extracted by using Pyradiomics 
(version 3.0.1) [24]. The voxel intensity values were dis-
cretized when computing some texture features using a 
bin width of 25 Hounsfield units [25]. To reduce the effect 
of low resolution along the z-axis in part of the data, the 
radiomics features were computed only by applying 2D 
filters.

Feature reproducibility and feature repeatability against 
segmentation were assessed using the QIN Lung CT 
Segmentation dataset, a random subset of the data, and 
the RIDER dataset (Additional file 1:  S3). Reproducible 
and repeatable features are potentially more robust to 
variations in CT scanners, acquisition parameters, and 
segmentation.

After feature extraction and reproducibility selection, 
delta-radiomics features were calculated as the relative 
net change between features at baseline and first follow-
up CTs. Patients without first follow-up CT were dis-
carded from this analysis.

A standard scaler was applied to normalize each radi-
omics feature. The transformation was learned in train-
ing and then applied to the test set.

Deep feature extraction
To extract high-level and domain-related representations 
(e.g., texture, morphology) of the tumors’ deep learning-
based features, the convolutional neural network (CNN) 
architecture NoduleX [26] was used as a reference imple-
mentation to predict the response to immunotherapy. 
NoduleX input consists of a small 3D volume of 47× 47 
pixels × 5 slices centered in the centroid of the tumor that 
was sampled and resized from a square of 10× 10 cm2 . 
Image intensities were clipped to the range [-1000, 3050] 
and then normalized.

A transfer learning approach was used to pretrain Nod-
uleX CNN architecture weights. Namely, the network 
was pre-trained to predict the malignancy of tumors col-
lected from 719 patients of The Lung Image Database 
Consortium and Image Database Resource Initiation 
Data Set (LIDC-IDRI) [27] and 14 patients who did not 
meet the inclusion criteria of the immunotherapy dataset 
(1528 tumors, Additional file  1:  S4). Then, the last two 

convolutional layers and the classification layers were 
fine-tuned to predict the response (defined by the end-
point PFS6). For network fine-tuning, all primary tumors 
of all available CT images from the immunotherapy train-
ing data set (357 tumors - 128 patients) were used. Fine-
tuning allowed the efficient transfer of malignant-related 
spatial features to more complicated high-level semantic 
features related to immunotherapy response.

After training, deep features were extracted for each 
tumor from the first fully connected layers of the net-
work (500 deep features), referred to as DF-imm. Simi-
larly to delta-radiomics, delta DF-imm features were also 
calculated.

Clinical data
Baseline demographic, epidemiological, clinical and 
laboratory data were collected from electronic patient 
records, as well as hemogram-related data after the sec-
ond and third treatment cycles. They included sex, age, 
body mass index, tumor histology, smoking, previous 
surgery, presence of metastases, and immune cell-related 
indexes, among others (Additional file 1: S5).

One hot encoding was applied to categorical or con-
stant variables. Z-score normalization was applied to 
continuous variables, and missing data were imputed 
using the k-means algorithm. Delta features were also 
calculated.

Model design and analysis
Random Forest (RF) models were built for each primary 
endpoint in the training set using stratified three-fold 
cross-validation. The number of training patients for 
each RF model is reported in Additional file 1:Tables S1 
(PFS6) and S2 (PFS9). Feature selection and RF hyperpa-
rameter optimization were performed using a Bayesian 
optimization approach. The optimized hyperparameters 
were the number of estimators, the maximum depth, and 
the number of features.

Radiomics, deep features, and clinical data were used 
to implement baseline, delta, and longitudinal RF mod-
els trained for predicting the immunotherapy response. 
Baseline models’ (RF-baseline) inputs were only the 
data before the start of treatment, whereas longitudinal 
models used baseline and early treatment data. Patients 
who did not have follow-up data were excluded from the 
longitudinal analysis. Two types of longitudinal models 
were constructed: RF-delta and RF-longitudinal. RF-delta 
model had delta features as input and considered only 
patients with baseline and first follow-up data. On the 
other hand, RF-longitudinal input was the concatenation 
of all available features over time for each patient (num-
ber of features multiplied by the number of time points). 
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Missing time points were imputed as the closest in time 
available data.

For comparison, the NoduleX architecture pre-trained 
for malignancy prediction was fine-tuned with the base-
line training data of the immunotherapy dataset to pre-
dict treatment durable response (CNN-baseline).

For predicting PFS9, because the training was imbal-
anced, a synthetic minority oversampling technique 
(SMOTE) was used during the training phase to resample 
the minority class (“responders”). As SMOTE was con-
figured to generate synthetic samples in training consid-
ering five nearest neighbors, the numbers of responders 
and nonresponders were equal.

Once the models were trained, ensemble RF models 
were implemented as the mean value of the predictions 
of the imaging and clinical models alone (ensemble RF). 
They allowed integrating both clinical and image infor-
mation. The workflow is shown in Fig. 2.

Model interpretation
The SHAP (or SHapley Additive exPlanations) algo-
rithm was employed to visualize each feature’s contri-
bution to producing the final prediction of the model 
[28]. SHAP assigns an importance value to each feature 
for each individual predicted value based on concepts 
from Cooperative Game Theory and local explana-
tions. We applied the SHAP algorithm to the clinical 
model of the ensemble RF model. SHAP values were 
calculated to understand how much each feature 

impacted the model output or how much it increased 
or decreased the probability of a single outcome. SHAP 
values allowed us to determine whether the relation-
ship between a feature and the output was correlative 
or anticorrelative. SHAP analysis was performed in 
Python using the KernelExplainer in the SHAP module 
(version 0.40.0).

Statistical and survival analysis
Stratified three-fold cross-validation was performed in 
the training set to train all the implemented models and 
optimize the RF hyperparameters. Model performance 
was evaluated by the area under the receiver operating 
characteristic (ROC) curve (AUC) and the correspond-
ing 95% confidence interval (CI) was estimated with a 
bootstrap resampling approach (1000 iterations). The 
differences between ROC curves were assessed using 
the DeLong test. Kaplan-Meier survival analysis was 
performed for patients’ stratification based on the mod-
el’s predictions (threshold = 0.5). The significance of 
differences between survival curves was assessed with 
the log-rank test. Hazard ratios (HRs) and concord-
ance index were calculated using the Cox proportional-
hazards model. p-values less than 0.05 (two-sided 
tests) were considered significant. R (version 4.1.1) and 
Python (version 3.7.10) were used for statistical analysis 
and model implementation.

Fig. 2  Implementation workflow of the longitudinal and ensemble models
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Results
Patient characteristics
The clinical characteristics of patients in the training 
and independent test cohorts in the baseline and lon-
gitudinal analysis for PFS6 are summarized in Table 1. 
The characteristics of a subset of patients with imaging 

data are summarized in Additional file  1: S6 and S7. 
The same distributions were verified for PFS9.

Among the selected 264 patients, 80 were female 
(mean age, 62.6 ± 9.8 [standard deviation]) and 184 
were male (mean age, 65.7 ± 9.7 [standard deviation]). 
Regarding our cohort, we found the following: 43.9% 
of the patients responded to immunotherapy after 6 

Table 1  Demographic and clinical characteristics of the patients in the baseline and longitudinal analyses. P-values of no significant 
difference analysis (p-value> 0.05) between the training and test set after two samples T-test for continuous variables, and Chi-square 
test for categorical variables. SD represents the standard deviation, and Q1 and Q3 represent the first and third quartiles, respectively

Characteristic Baseline analysis Longitudinal analysis

All patients
(N= 264)

Train set
(N = 221)

Test set
(N = 43)

P-value All patients
(N= 200)

Train set
(N = 167)

Test set
(N = 33)

p-value

PFS, mean (SD) 9.0 (11.1) 9.3 (11.6) 7.6 (8.1) 0.242 11.1 (11.8) 11.6 (12.3) 9.0 (8.6) 0.147

OS, mean (SD) 13.3 (12.2) 13.3 (12.5) 13.5 (10.5) 0.903 16.0 (12.4) 16.0 (12.8) 15.7 (10.6) 0.889

Status

 Alive 107 (40.5%) 91 (41.2%) 16 (37.2%) 0.753 91 (45.5) 78 (46.7) 13 (39.4) 0.562

 Dead 157 (59.5%) 130 (58.8%) 27 (62.8%) 109 (54.5) 89 (53.3) 20 (60.6)

Response

 Non-responders 148 (56.1%) 124 (56.1%) 24 (55.8%) 1.000 90 (45.0%) 75 (44.9%) 15 (45.5%) 1.000

 Responders 116 (43.9%) 97 (43.9%) 19 (44.2%) 110 (55.0%) 92 (55.1%) 18 (54.5%)

Progression

 No progression 45 (17.0%) 40 (18.1%) 5 (11.6%) 0.417 42 (21.0%) 38 (22.8%) 4 (12.1%) 0.256

 Progression 219 (83.0%) 181 (81.9%) 38 (88.4%) 158 (79.0%) 129 (77.2%) 29 (87.9%)

 Age, median [Q1,Q3] 65.0 [59.0,71.0] 65.0 [58.0,71.0] 67.0 [60.5,72.5] 0.204 65.0 [58.0,70.2] 64.0 [57.0,70.0] 67.0 [60.0,72.0] 0.266

Sex

 Female 80 (30.3%) 66 (29.9%) 14 (32.6%) 0.865 58 (29.0%) 47 (28.1%) 11 (33.3%) 0.696

 Male 184 (69.7%) 155 (70.1%) 29 (67.4%) 142 (71.0%) 120 (71.9%) 22 (66.7%)

 IPA, mean (SD) 45.2 (33.4) 45.1 (33.8) 45.4 (31.5) 0.958 44.0 (34.1) 44.9 (34.6) 39.0 (31.2) 0.357

Smoking

 Current smoker 55 (21.0%) 50 (22.7%) 5 (11.9%) 0.258 39 (19.7%) 35 (21.1%) 4 (12.5%) 0.530

 Former smoker 180 (68.7%) 147 (66.8%) 33 (78.6%) 135 (68.2%) 111 (66.9%) 24 (75.0%)

 Non-smoker 27 (10.3%) 23 (10.5%) 4 (9.5%) 24 (12.1%) 20 (12.0%) 4 (12.5%)

Tumour histology

 Adenocarcinoma 203 (76.9%) 170 (76.9%) 33 (76.7%) 0.897 151 (75.5%) 126 (75.4%) 25 (75.8%) 0.896

 Epidermoid carcinoma 52 (19.7%) 43 (19.5%) 9 (20.9%) 40 (20.0%) 33 (19.8%) 7 (21.2%)

 Other 9 (3.4%) 8 (3.6%) 1 (2.3%) 9 (4.5%) 8 (4.8%) 1 (3.0%)

 PDL1, mean (SD) 0.4 (0.4) 0.4 (0.4) 0.4 (0.4) 0.876 0.4 (0.4) 0.4 (0.4) 0.3 (0.3) 0.194

Surgery

 No 227 (86.0%) 190 (86.0%) 37 (86.0%) 1.000 171 (85.5%) 142 (85.0%) 29 (87.9%) 0.792

 Yes 37 (14.0%) 31 (14.0%) 6 (14.0%) 29 (14.5%) 25 (15.0%) 4 (12.1%)

Treatment

 Combined immunological 
agents

39 (14.8%) 29 (13.1%) 10 (23.3%) 0.393 31 (15.5%) 24 (14.4%) 7 (21.2%) 0.276

 Immunotherapy + chemo‑
therapy

50 (18.9%) 41 (18.6%) 9 (20.9%) 39 (19.5%) 30 (18.0%) 9 (27.3%)

 Immunotherapy + radio‑
therapy

17 (6.4%) 15 (6.8%) 2 (4.7%) 11 (5.5%) 11 (6.6%) 0 (0%)

 Monotherapy 154 (58.3%) 132 (59.7%) 22 (51.2%) 116 (58.0%) 99 (59.3%) 17 (51.5%)

 Other 4 (1.5%) 4 (1.8%) 0 (0%) 3 (1.5%) 3 (1.8%) 0 (0%)
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months of treatment, while only 33.2% responded after 
9 months; adenocarcinoma was the most prevalent 
histological variant of advanced NSCLC (76.9%); and 
89.7% of the patients were current or former smok-
ers. Immunotherapy treatment included monotherapy 
(58.3%), immunotherapy combined with radiation 
therapy (6.4%), immunotherapy combined with chemo-
therapy (18.9%) and a combination of different immu-
nological agents (14.8%). No demographic or clinical 
characteristics had significant differences (p-value < 
0.05) between the training and test set after the two 
samples of T-tests for continuous variables and Chi-
square tests for categorical variables.

For the subcohort of patients with imaging data (171 
over 264 patients), the training and the independent 
test sets had identical distributions of demographics 
and clinical characteristics (no statistical difference p > 
0.05).

Model development and response prediction performance
From the initial set of 1365 radiomics features, only 173 
(13%) verified both reproducibility and repeatability 
against segmentation tests. Furthermore, a total of 500 
DF-imm were extracted for each tumor using the Nod-
uleX architecture. The number of features used as input 
varied depending on each model. The number of features 
selected for each implemented model and the results in 
the training set are shown in Additional file 1: Tables S8 
and S9, respectively.

Figures 3 and 4 compare the ROC curves of CNN-base-
line and the baseline, delta and longitudinal RF models 
using clinical, radiomics and DF-imm data in the inde-
pendent test cohort for PFS6 and PFS9, respectively.

Longitudinal models performed better than baseline 
or delta models in the independent test cohort, achiev-
ing an AUC of 0.740 (95% CI: 0.563−0.833) with DF-imm 
and an AUC of 0.700 (95% CI: 0.508−0.877) with clinical 

Fig. 3  Comparisons of the ROC curves for endpoint PFS6 prediction of response of the baseline (a), delta (b), and longitudinal RF models (c) based 
on clinical, radiomics, or deep-radiomics data

Fig. 4  Comparisons of the ROC curves for endpoint PFS9 prediction of response of the baseline (a), delta (b), and longitudinal RF models (c) based 
on clinical, radiomics, or deep-radiomics data
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data for PFS6 and an AUC of 0.702 (95% CI: 0.515−0.867) 
with DF-imm and an AUC of 0.585 (95% CI: 0.367−
0.783) with clinical data for PFS9. In both cases, the auto-
matically extracted features performed better than the 
hand-crafted radiomics features and clinical data (Figs. 3 
and 4).

Tables  2 and 3 compare the evaluation metrics of 
all implemented models, showing great improvement 
when using the longitudinal models.

Integration of imaging and clinical data
Table  4 shows the performance in the independent test 
set of the ensemble RF models that used both clinical 
and imaging information. The comparison with base-
line and longitudinal RF models tested on the same 
patients is shown in Additional file 1: Tables S10 and S11 
for endpoint PFS6 and PFS9, respectively. The ensem-
ble RF-longitudinal achieved an AUC of 0.824 (95% CI: 
0.658−0.953) for PFS6 with a 41% improvement for RF 
models with only clinical data (DeLong test: p-value = 
0.001) and 13% for the RF model with deep features data 
(DeLong test: p-value = 0.013). When considering PFS9, 
the ensemble model achieved an AUC of 0.753 (95% CI: 
0.549−0.931) with a 31% improvement compared to RF 
models with only clinical data (DeLong test: p-value = 
0.053) and 5% for the RF model based on deep features 
data (DeLong test: p-value = 0.058) (Fig. 5). Furthermore, 
the ensemble models scores were significantly associated 

with progression-free survival and overall survival in the 
independent test set (6 months: C-index 4.68, 95% CI: 
[1.52,7.84], p-value< 0.004; 9 months: C-index 2.38, 95% 
CI: [0.23,4.54], p-value< 0.030). The HRs with their cor-
responding 95% CIs and the C-indexes of longitudinal 
and ensemble RF models for PFS and OS are shown in 
Tables  5 (endpoint PFS6) and 6 (endpoint PFS9). The 
integration of clinical and DF-imm data appeared to be 
a more robust approach compared to the radiomics or 
clinical models.

Figure  6 shows the Kaplan-Meier survival curves for 
PFS and OS on the independent test set for the ensem-
ble RF models. The ensemble RF could significantly 
stratify PFS and OS for both endpoints compared to the 
other models (p-value< 0.05). The comparisons between 
Kaplan-Meier curves for longitudinal RF and ensemble 
RF models are shown in Additional file  1:  Figures  S1 
(endpoint PFS6) and S2 (endpoint PFS9).

Model interpretation
The SHAP algorithm was employed to visualize each 
feature’s contribution to producing the final prediction 
of the model. The SHAP algorithm was applied to the 
clinical model of the ensemble RF. A positive SHAP value 
indicated an increased risk of progression for each pre-
diction. As observed in Fig. 7, the most important clini-
cal variables were the neutrophils-to-lymphocytes ratio 
(NLR) and the systemic immune-inflammation index 

Table 2  Response prediction performance comparison between baseline, delta and longitudinal models in the independent test set 
for endpoint PFS6 by evaluating AUC, ACC, SENS, SPEC, PREC and bACC, respectively

For each metric, the 95% confidence interval is shown and the highest value is highlighted in bold

Model Features N test AUC​
[95% CI]

ACC​
[95% CI]

SENS
[95% CI]

SPES
[95% CI]

PREC
[95% CI]

bACC​
[95% CI]

CNN-baseline Image data 43 0.518
[0.329,0.696]

0.535
[0.372,0.674]

0.750
[0.565,0.909]

0.263
[0.067,0.478]

0.562
[0.387,0.737]

0.507
[0.377,0.643]

RF-baseline Clinical data 43 0.667
[0.485,0.833]

0.651
[0.512,0.791]

0.833
[0.667,0.962]

0.421
[0.200,0.650]

0.645
[0.480,0.812]

0.627
[0.488,0.774]

RF-baseline Radiomics 43 0.448
[0.291,0.607]

0.442
[0.302,0.605]

0.333
[0.150,0.526]

0.579
[0.350,0.800]

0.500
[0.250,0.750]

0.456
[0.306,0.601]

RF-baseline DF-imm 43 0.588
[0.409,0.767]

0.558
[0.419,0.698]

0.833
[0.679,0.960]

0.211
[0.050,0.417]

0.571
[0.406,0.735]

0.522
[0.403,0.638]

RF-delta Clinical data 21 0.435
[0.173,0.714]

0.333
[0.143,0.571]

0.167
[0.000,0.417]

0.556
[0.200,0.875]

0.333
[0.000,0.750]

0.361
[0.163,0.559]

RF-delta Radiomics 36 0.489
[0.276,0.706]

0.528
[0.361,0.694]

0.524
[0.304,0.737]

0.533
[0.273,0.786]

0.611
[0.389,0.833]

0.529
[0.357,0.688]

RF-delta DF-imm 36 0.660
[0.451,0.846]

0.611
[0.444,0.778]

0.714
[0.500,0.900]

0.467
[0.200,0.733]

0.652
[0.455,0.842]

0.590
[0.433,0.750]

RF-longitudinal Clinical data 33 0.700
[0.508,0.877]

0.576
[0.394,0.727]

0.467
[0.200,0.733]

0.667
[0.438,0.875]

0.530
[0.250,0.800]

0.567
[0.405,0.733]

RF-longitudinal Radiomics 40 0.581
[0.407,0.749]

0.628
[0.488,0.767]

0.667
[0.464,0.850]

0.579
[0.348,0.800]

0.667
[0.474,0.852]

0.623
[0.466,0.763]

RF-longitudinal DF-imm 40 0.740
[0.563,0.883]

0.700
[0.550,0.825]

0.818
[0.647,0.958]

0.556
[0.312,0.783]

0.692
[0.500,0.864]

0.687
[0.550,0.827]
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(SII): for both endpoints, the higher the values in the sec-
ond time step (around 1–2 months after treatment), the 
higher the probability of progression. Moreover, the pres-
ence of liver metastases appeared to be related to a worse 
outcome.

Discussion
In immuno-oncology, the traditional approach of manu-
ally measuring the size changes of the target lesions dur-
ing treatment is no longer adequate because the tumor 
unconventionally responds to treatment [29]. There-
fore, identifying unusual tumor response patterns could 
avoid premature treatment interruptions or ineffective 

prolongation. Automatic extraction of imaging biomark-
ers that capture changes in tumor radiophenotypes dur-
ing treatment in association with clinical information can 
potentially aid in patient evaluation and ultimately moni-
tor and adapt therapy dynamically.

In this two-institutional study, longitudinal informa-
tion from clinical data and radiomics was used to predict 
clinical durable benefit at 6 and 9 months after the start 
of anti-PD-1/PD-L1 monoclonal antibodies treatment in 
advanced NSCLC patients using an ensemble approach.

A deep-learning method was used to automatically 
extract spatial information from CT scans without 
manual or semiautomatic segmentation and with the 

Table 3  Response prediction performance comparison between baseline, delta and longitudinal models in the independent test set 
for endpoint PFS9 by evaluating AUC, ACC, SENS, SPEC, PREC and bACC, respectively

For each metric, the 95% confidence interval is shown and the highest value is highlighted in bold

Model Features N test AUC​
[95% CI]

ACC​
[95% CI]

SENS
[95% CI]

SPES
[95% CI]

PREC
[95% CI]

bACC​
[95% CI]

CNN-baseline Image data 43 0.429
[0.249,0.616]

0.674
[0.535,0.814]

1.000
[1.000,1.000]

0.000
[0.000,0.000]

0.674
[0.535,0.814]

0.500
[0.500, 0.500]

RF-baseline Clinical data 43 0.563
[0.392,0.735]

0.581
[0.442,0.721]

0.793
[0.636,0.929]

0.143
[0.000,0.357]

0.657
[0.500,0.811]

0.468
[0.352,0.591]

RF-baseline Radiomics 43 0.286
[0.112,0.494]

0.512
[0.372,0.651]

0.655
[0.480,0.815]

0.214
[0.000,0.455]

0.633
[0.464,0.800]

0.435
[0.303,0.576]

RF-baseline DF-imm 43 0.541
[0.359,0.724]

0.628
[0.488,0.767]

0.759
[0.600,0.903]

0.357
[0.118,0.600]

0.710
[0.533,0.867]

0.558
[0.405,0.711]

RF-delta Clinical data 21 0.550
[0.301,0.795]

0.524
[0.333,0.762]

0.636
[0.333,0.900]

0.400
[0.100,0.714]

0.538
[0.250,0.818]

0.518
[0.306,0.750]

RF-delta Radiomics 36 0.598
[0.353,0.848]

0.639
[0.472,0.778]

0.680
[0.500,0.857]

0.545
[0.231,0.857]

0.773
[0.588,0.947]

0.613
[0.429,0.788]

RF-delta DF-imm 36 0.525
[0.315,0.743]

0.556
[0.389,0.722]

0.760
[0.571,0.920]

0.091
[0.000,0.300]

0.655
[0.481,0.824]

0.425
[0.315,0.554]

RF-longitudinal Clinical data 33 0.585
[0.367,0.783]

0.545
[0.364,0.697]

0.600
[0.381,0.812]

0.462
[0.182,0.727]

0.632
[0.412,0.850]

0.531
[0.360,0.698]

RF-longitudinal Radiomics 40 0.528
[0.341,0.701]

0.558
[0.395,0.698]

0.724
[0.562,0.88]

0.214
[0.000,0.455]

0.656
[0.484,0.818]

0.469
[0.338,0.612]

RF-longitudinal DF-imm 40 0.702
[0.515,0.867]

0.750
[0.625,0.875]

0.885
[0.750,1.000]

0.500
[0.214,0.769]

0.767
[0.606,0.914]

0.692
[0.540,0.840]

Table 4  Response prediction performance comparison between longitudinal and ensemble models in the independent test set for 
endpoint PFS6 and PFS9 by evaluating AUC, ACC, SENS, SPEC, PREC and bACC, respectively

For each metric, the 95% confidence interval is shown and the highest value for each endpoint is highlighted in bold

Endpoint Model Features N test AUC​
[95% CI]

ACC​
[95% CI]

SENS
[95% CI]

SPES
[95% CI]

PREC
[95% CI]

bACC​
[95% CI]

PFS6 Ensemble RF-baseline DF-imm
Clinical data

43 0.678
[0.513,0.836]

0.605
[0.442,0.744]

0.875
[0.731,1.000]

0.263
[0.071,0.467]

0.600
[0.436,0.758]

0.569
[0.448,0.684]

Ensemble RF-longitudinal DF-imm
Clinical data

32 0.824
[0.658,0.953]

0.750
[0.594,0.906]

0.733
[0.500,0.938]

0.765
[0.533,0.947]

0.733
[0.471,0.933]

0.749
[0.594,0.897]

PFS9 Ensemble RF-baseline DF-imm
Clinical data

43 0.560
[0.377,0.731]

0.581
[0.442,0.721]

0.793
[0.643,0.933]

0.143
[0.000,0.364]

0.657
[0.487,0.811]

0.468
[0.360,0.590]

Ensemble RF-longitudinal DF-imm
Clinical data

32 0.753
[0.549,0.931]

0.813
[0.656,0.938]

0.947
[0.826,1.000]

0.615
[0.357,0.889]

0.783
[0.609,0.950]

0.781
[0.631,0.923]
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advantage of extracting features closely associated with 
response. Furthermore, deep-features compared to tradi-
tional radiomics may be more robust to noise variability 

introduced during image acquisition, making them more 
reproducible. Previous studies have demonstrated the 
ability of deep learning to capture higher-level features 

Fig. 5  Comparisons of ROC curves of longitudinal and ensemble RF models with clinical and radiomics data. a ROC curves for PFS6: PFS> 6 
months. b ROC curve for PFS9: PFS > 9 months

Table 5  Hazard ratios and C-indexes of longitudinal and ensemble models trained for endpoint PFS6 to predict PFS and OS in the 
independent test set

The highest value for each metric is highlighted in bold

PFS OS

Model Features HR
[95% CI]

p-value C-index HR
[95% CI]

p-value C-index

RF-longitudinal Clinical data 1.63
[-1.00,4.25]

0.224 0.615 3.49
[0.28,6.69]

0.033 0.656

RF-longitudinal DF-imm 3.30
[1.02,5.59]

0.005 0.687 4.31
[1.43,7.12]

0.003 0.709

Ensemble
RF-longitudinal

DF-imm
Clinical data

4.68
[1.52,7.84]

0.004 0.723 6.00
[2.27,9.73]

0.002 0.768

Table 6  Hazard ratios and C-indexes of longitudinal and ensemble models trained for endpoint PFS9 to predict PFS and OS in the 
independent test set

The highest value for each metric is highlighted in bold

Model Features PFS OS

HR
[95% CI]

p-value C-index HR
[95% CI]

p-value C-index

RF-longitudinal Clinical data 0.52
[-1.16,2.20]

0.542 0.575 1.73
[-0.67,4.13]

0.157 0.613

RF-longitudinal DF-imm 1.35
[-0.23,2.92]

0.093 0.642 1.72
[-0.18,3.62]

0.076 0.641

Ensemble
RF-longitudinal

DF-imm
Clinical data

2.38
[0.23,4.54]

0.030 0.685 2.94
[0.40,5.48]

0.023 0.736
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related to the immunotherapy response [20, 30–32]. The 
results of this study demonstrated that the deep features 
were more robust than traditional radiomics in predict-
ing immunotherapy clinical durable benefit in advanced 
NSCLC, as well as in survival prediction and patient 
stratification. This confirms the hypothesis that deep-
learning techniques allow the extraction of higher-level 
spatial features that are deeply related to response to 
treatment. They might represent properties of the tumors 
that are indicative of treatment response, such as changes 
in shape, size or intensity.

Moreover, a multiple time-point analysis was per-
formed. Typically, only data before the start of treatment 
is used for prediction, without including any information 

during treatment. In previous studies, longitudinal data 
have been used to predict immunotherapy response 
from baseline and first follow-up CT scans [14, 15, 14, 
15]. However, using data before treatment and up to 
four months after treatment (up to three time points per 
patient), we were able to improve the predictions of dura-
ble clinical benefit of immunotherapy.

To the best of our knowledge, no previous studies have 
demonstrated that the integration of complementary 
longitudinal clinical and imaging data can significantly 
improve immunotherapy clinical benefit prediction. The 
ensembles of longitudinal models with deep-radiomics 
(DF-imm) and clinical data significantly improved pre-
diction performance, achieving an AUC of 0.824 for PFS6 

Fig. 6  Kaplan-Meier survival curves on the independent test cohort for ensemble RF models trained for endpoint PFS6 (first row) and PFS9 (second 
row). a and c represent the PFS Kaplan-Meier curves, while b and d represent the OS Kaplan-Meier curves
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and an AUC of 0.753 for PFS9. These models significantly 
stratified patients in high- and low-risk groups for both 
PFS and OS (p-value< 0.05), and their predictions signifi-
cantly correlated with PFS (PFS6 model: C-index 0.723, 
p-value = 0.004; PFS9 model: C-index 0.685, p-value = 
0.030) and OS (PFS6 models: C-index 0.768, p-value 
= 0.002; PFS9 model: C-index 0.736, p-value = 0.023). 
After attempting to identify any unique characteristics 
among the patients with better survival, we found no 
significant differences in their clinical data. As a result, 
we have determined that the accurate predictions result 
from the model effectively integrating information from 
both the deep-features and clinical variables. As a com-
parison, Vanguri et al. [21] showed that integrating base-
line medical imaging, histopathological and genomic 
features (multimodal model) outperformed unimodal 
models, achieving an AUC of 0.80 for the immunother-
apy response prediction.

The final ensemble models considered changes in 
imaging tumor radiophenotypes and clinical covariates 
during early treatment. The SHAP analysis shows that 
for both PFS6 and PFS9 endpoints, the most important 
clinical variables were the NLR and the SII. High values 
of NLR and SII after the second cycle of therapy were 
highly associated with poor prognosis probably because 
of a reduced antitumor effect of the immune system. This 
is consistent with the literature in which baseline NLR is 
considered a prognostic factor associated with a lower 
likelihood of treatment response [34], and inflammation 
markers, such as SII, are related to tumor growth, pro-
gression, and poor OS [35]. In our study, both NLR and 

SII early follow-up values are shown to be important for 
the clinical durable benefit of the therapy. Furthermore, 
the models considered that the presence of metastases 
in the liver before treatment was related to a worse out-
come. On the other hand, higher levels of hemoglobin 
before and during treatment were associated with a bet-
ter response to treatment.

Our study had some limitations. First, the retrospective 
and multi-center nature of the work implies a heterogene-
ity of the cohort in terms of treatment and imaging pro-
tocols. Second, the sample size of the two cohorts (FJD 
and CUN) was relatively large, but a relevant number 
of cases did not have longitudinal imaging data. Third, 
there was an important unbalance between responders 
and nonresponders for PFS9. The SMOTE technique was 
used to partially reduce this imbalance during the model 
training, but it did not result in performance comparable 
to the PFS6 models. To further improve the prediction of 
treatment response, it may be necessary to collect more 
data from patients with prolonged responses to treat-
ment and/or include more time points in the analysis. 
Forth, the interpretation of the deep-features is often not 
straightforward since they are optimized to minimize the 
prediction error and are not designed to match human 
intuition or knowledge. Despite the limitations, they 
can still offer insights into the relationships between the 
tumors’ image information and response prediction and 
contribute to making accurate predictions. Finally, no 
comparison with other prognostic biomarkers was made, 
such as PDL1 or tumor mutational burden, due to their 
inaccessibility. Similarly, for the definition of radiological 

Fig. 7  Clinical model interpretation using SHAP. The summary plots show each clinical data impact on longitudinal RF model for endpoint PFS6 (a) 
and endpoint PFS9 (b). A positive SHAP value indicates an increased risk of progression. Each point in the summary plot represents a patient
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progression, the iRECIST criteria were not quantitatively 
evaluated by the radiologists, so that no comparison 
could have been performed. In addition, the integra-
tion of these biomarkers, as well as other new molecu-
lar parameters from liquid biopsies such as circulating 
tumor DNA, circulating tumor cells, circulating endothe-
lial cells or the changes in variant allele frequencies with 
the deep features and clinical data used in the study, may 
enhance the performance of the models even further [36, 
37].

Conclusion
In conclusion, an ensemble of longitudinal deep-radiom-
ics and clinical data has been used to predict the dura-
ble clinical benefit of immunotherapy at 6 and 9 months 
after treatment. Our results demonstrate that integrating 
multidimensional and longitudinal data improves predic-
tion performance. The model may be used as a prognos-
tic biomarker and decision-support tool that can assist 
oncologists in identifying patients for whom the therapy 
is effective, avoiding premature interruptions or, on the 
other hand, the lengthening of an ineffective treatment.
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