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Abstract 

Background  Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive 
immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity 
during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene 
expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoim‑
mune genesis in terms of immune responses remains to be summed up.

Methods  Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus 
erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data 
of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and 
GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to iden‑
tify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma 
R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-
protein network, and signaling pathway analyses.

Results  The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2’-5’-oligoadenylate synthetase 
1 (OAS1), 2’-5’-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differen‑
tially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and 
WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while 
reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclo‑
pedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were cor‑
related with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer 
and activator of transcription (STAT) signaling pathway.

Conclusion  The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and 
autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and 
autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during 

*Correspondence:
Zhizhuang Joe Zhao
joe-zhao@ouhsc.edu
Shu Xing
xingshu@jlu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-03943-9&domain=pdf


Page 2 of 16Sui et al. Journal of Translational Medicine          (2023) 21:109 

tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point 
of immune homeostasis.

Keywords  Tumorigenesis, Autoimmune genesis, Invasive ductal carcinoma, Systemic lupus erythematosus, STAT1, 
OAS1, OASL, PML, IFN-JAK-STAT signaling pathway

Introduction
With functions of immune defense, surveillance, and 
homeostasis, immunity is a complicated biological sys-
tem for maintaining the homeostasis in multicellular 
organisms. The immune system protects organisms from 
various pathogens and possibly harmful substances, 
eliminates invading pathogens, monitors interior milieu 
by recognizing and removing abnormal components, and 
maintains immunological homeostasis through immune 
tolerance and immune regulation. Any issues in the 
components comprising the immune system network 
may lead to multiple problems damaging human health, 
including hypersensitivity [1], pathogen infections [2], 
tumorigenesis [3], and autoimmune disorders [4].

Genetic changes can be well-explained by the tumo-
rigenesis process [5], and the immune system is fully 
capable to clearing up the mutant cells/debris through 
the tumoricidal effects from natural killer (NK) cells and 
a series of boosting mechanisms to avoid tumorigen-
esis, such as the releasement of chemokines/pro-inflam-
matory cytokines in tumor microenvironment (TME), 
recruitment of conventional DCs (cDCs), differentiation 
of cytotoxic T cells (CTLs), help from cytotoxic neu-
trophils and anti-tumor T cells, alterations of pattern 
recognition, patrolling behavior of monocytes, and so 
on [6–10]. However, once cancer cells escape from the 
immune-surveillance, they tend to establish immune 
tolerance for them to survive in organisms, and immune 
responses are not able to eliminate these malignant cells, 
which lead to an uncontrollable growth.

Autoimmune disorders are characterized by abnormal 
activation in the immune system resulted from the loss of 
self-tolerance and disrupted immune homeostasis [11]. 
Under autoimmunity, the immune system attacks self-
healthy tissues by autoreactive T cells and auto-antibodies 
causing persistently chronic inflammation and even mul-
tiple organ failures [12, 13]. The impacts from autoreac-
tive T-lymphocytes to the initiation and/or progression of 
autoimmune disorder derive from CD4+ T cell activation, 
which is a coordinated procedure requiring multiple signals 
[14]. Furthermore, aberrant immune checkpoint proteins, 
programmed cell death protein 1/programmed cell death 
protein ligand 1 (PD-1/PD-L1), contribute to autoreactive 
immunity as well [15, 16]. Besides, humoral immunity plays 
a major role in biological damages during autoimmune 
disorders through the production of auto-antibody from 

plasma cells [17]. Although the antibody-secreting cells 
have a vital function in adaptive immunity, other  B-lym-
phocytes regulate cellular immunity  and  affect immune 
response to a great extent as well during autoimmune dis-
orders [18].

In terms of the onsets of disease, malignancies and auto-
immune disorders are etiologically diverse, and the thera-
pies for human diseases are more and more individualized 
and precisely targeted [19–21]. Although the function of 
immunity during the onset of these two processes appears 
to be distinct, the underlying mechanism is shared. To be 
specific, inadequate immune responses because of poor 
immune surveillance leads to tumorigenesis, while exces-
sive immune responses due to breakdown of immune tol-
erance cause autoimmune genesis. To date, gene expression 
data for large bodies of clinical samples are available, but 
the commonalities of tumorigenesis and autoimmune gen-
esis in terms of immune responses remains to be summed 
up. Hence, we were trying to construct a shared differen-
tially gene expression profile to explore the commonalities 
between tumorigenesis and autoimmune genesis. The most 
common type of cancer is breast cancer accounting for 31% 
of new diagnosed cancers among the U.S. female popula-
tion [22], and approximately 287,850 new cases of invasive 
breast cancer will be diagnosed among U.S. women in 2022 
[23]. Invasive breast cancers are the most common histo-
logical subtypes of breast cancer [24], and invasive ductal 
carcinoma (IDC) are the most common type of breast can-
cer [25]. Systemic lupus erythematosus (SLE) is prevalent 
in 20–150 per 100,000 people, and higher prevalence and 
greater relevance of organ damaging are common among 
people of multiple ancestries in United State [26]. In terms 
of the distribution of the SLE population, the majority 
of patients with SLE are women of childbearing age [27], 
overlapping with the onset of  IDC. Hence, we conducted 
an IDC-SLE shared differentially gene expression analysis 
to explore the potential commonalities and connections 
between tumorigenesis and autoimmune genesis to explain 
the differences of their immune responses.

Methods
IDC data collection and differentially expressed genes 
(DEGs) and hub genes identification
To study tumorigenesis process, we attempted to include 
the IDC studies  that contain most  IDC patients paired 
with adjacent normal tissue or healthy breast as control. 
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We downloaded gene expression matrixes and clinical 
information (age, gender, and disease severity) of five 
selected IDC studies including GSE29044, GSE21422, 
GSE22840, GSE15852, and GSE9309 from Gene Expres-
sion Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​
gds). These contained 97 controls and 237 IDC samples 
(Table1). We used Grade to evaluate the disease sever-
ity of IDC: breast cancers were categorized as lumi-
nal A (ER-positive and/or PR-positive and HER2- and 
either histologic grade 1 or 2); luminal B (ER-positive 
and/or PR-positive and HER2+  or ER-positive and/or 
PR-positive, HER2- and grade 3); HER2 (ER-negative 
and PR-negative and HER2+); and triple negative (ER-, 
PR-, and HER2-) [28]. As the flowchart (Fig.  1) shows, 
we were trying to identify the crucial genes during IDC 
initiation with three bioinformatics tools (GEO2R, the 
limma R package, and WGCNA). The first method uses 
GEO2R (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) to 
figure out DEGs. The genes satisfying |log2(FC)|> 1 and 
the p-value < 0.05 were statistically significant, and all of 
the DEGs from five IDC studies, which were identified 
in at least two IDC studies, were considered as DEGs 
in IDC within this method (Fig.  2). The Venn diagram 
including DEGs from five IDC studies was used to show 
mathematical or logical connections between different 
collections of elements. The second method combined 
five gene expression matrixes from the five IDC stud-
ies to obtain a combined matrix for differential gene 
analysis. Then, we performed differential gene analysis 
in the combined matrix with the limma R package [29] 
after eliminating batch effects by the sva package [30]. 
When |log2(FC)|> 0.5 and p-value < 0.05  were satisfied, 
the gene was considered as being statistically signifi-
cant in the combined matrix (Fig. 3). The third method 
was the identification of modules by weighted gene co-
expression network analysis (WGCNA) in the IDC com-
bined matrix. WGCNA was performed on 10,949 genes 
by using the WGCNA R package [32]. A soft threshold 
of β = 12 (R2 > 0.6) (Fig.  4A) and a minimum module 
size of 30 was selected to yield three modules (Fig. 4B). 
The Pearson’s correlation coefficients were calculated 
between the samples and within each module (Fig.  4B). 
The genes  with absolute module eigengene-based con-
nectivity (kME) values of no less than 0.8 were regarded 
as hub genes.

SLE data collection and DEGs and hub genes identification
To study autoimmune genesis process, we attempted to 
include the SLE studies that  contain SLE patients and a 
considerable number of normal samples as control. We 
downloaded gene expression matrixes and clinical infor-
mation (age, gender, and disease severity) of five selected 

SLE studies including GSE154851, GSE99967, GSE61635, 
GSE50635, and GSE17755 from Gene Expression Omni-
bus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​gds). These 
contained 140 controls and 234 SLE samples (Table  1). 
We used systemic lupus erythematosus disease activity 
index (SLIDAI) to evaluate the disease severity of SLE. As 
the flowchart (Fig. 1) shows, we intended to identify cru-
cial genes during SLE initiation with three bioinformat-
ics tools (GEO2R, the limma R package, and WGCNA). 
The first method was using GEO2R (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​geo2r/) to figure out DEGs. The genes 
satisfying |log2(FC)|> 1 and the p-value < 0.05 were statis-
tically significant, and all of the DEGs from five SLE stud-
ies, which were identified in at least two SLE studies, were 
considered as DEGs in SLE within this method (Fig.  2). 
The Venn diagram including the DEGs from five SLE 
studies was used to show mathematical or logical connec-
tions between different collections of elements. The sec-
ond method combined five gene expression matrixes from 
five SLE studies to obtain a combined matrix for differen-
tial gene analysis. We performed differential gene analyses 
in the combined matrix by the limma R package [29] after 
eliminating batch effects by the sva package [30]. When 
|log2(FC)|> 0.5 and p-value < 0.05, the gene was consid-
ered as being statistically significant in the combined 
matrix (Fig.  3). The third method was  to identify mod-
ules by WGCNA in the SLE combined matrix. WGCNA 
was performed on 3,857 genes by using the WGCNA R 
package [32]. A soft threshold of β = 9 (R2 > 0.85) (Fig. 4D) 
and a minimum module size of 30 was selected to yield 
five modules (Fig.  4E). The Pearson’s correlation coef-
ficients were calculated between the samples and within 
each module (Fig. 4E). The genes with absolute eigengene-
based connectivity (kME) values of no less than 0.8 were 
regarded as hub genes.

Principal component analysis (PCA)
Before and after batch effects elimination, PCA were 
conducted by using the ggbiplot R package.

Function enrichment analysis
The DEGs and/or the hub genes screened from the 
three bioinformatics methods were subjected to Gene 
Ontology (GO) enrichment analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis 
by using the  Annotation, Visualization and Integrated 
Discovery (DAVID) database (https://​david.​ncifc​rf.​
gov/) [34]. A p-value < 0.05 under the hypergeometric 
test was considered significant. The final visualizations 
of function enrichment analysis were performed by 
using the ggplot2 R package.

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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Protein‑protein interaction (PPI) network analysis
The gene information in PPI networks was downloaded 
from the STRING database (https://​string-​db.​org/). The 
hub genes were screened with Cytoscape plug-in Cyto-
hubba according to the betweenness centrality (BC) of 
the gene in the PPI network of the three methods. The 
calculation of BC was conducted by Cytoscape plug-in 
Cytohubba and Cytoscape plug-in CytoNCA [36]. All PPI 
networks were operated within Cytoscape (https://​cytos​
cape.​org/) [36].

Gene identification by using three bioinformatics tools
We identified four shared differentially expressed genes 
in IDC and SLE by using the three different methods 
(Fig. 5A). The mRNA levels of signal transducer and acti-
vator of transcription 1 (STAT1), 2’-5’-oligoadenylate 
synthetase 1 (OAS1), 2’-5’-oligoadenylate synthetase 
like (OASL), and PML nuclear body scaffold (PML), 
and the multiple components in Interferon (IFN)-Janus 
kinase(Jak) -signal transducer and activator of transcrip-
tion (STAT) (IFN-JAK-STAT) signaling pathway from 
the combined matrix of IDC and SLE were presented 
as box plots (Fig. 5B, Fig. 6D, and Fig. 6E). Min to Max 
were used for statistical description. Data were analyzed 

for significance with two-tailed nonparametric test. The 
p-values < 0.05 were considered statistically significant. 
The visualization of box plots and statistical analyses 
were conducted in GraphPad Prism 9.0 (GraphPad Soft-
ware Inc.,LLC).

Expression profiles of STAT1, OAS1, OASL, and PML 
in multiple cancers and autoimmune diseases
We downloaded and analyzed the bar plots with the gene 
expression of STAT1, OAS1, OASL, and PML in mul-
tiple malignancies and paired normal tissues (Fig.  5C) 
from the GEPIA2 database (http://​gepia2.​cancer-​pku.​
cn/#​index) [37]. We downloaded and analyzed the heat-
map with the fold change of STAT1, OAS1, OASL, and 
PML between multiple autoimmune diseases and paired 
normal individuals (Fig.  5D) from the ADEx database 
(https://​adex.​genyo.​es/) [38].

Spearman’s correlation analysis of STAT1, OAS1, OASL, 
and PML with immune cell markers in BRCA and SLE
Here we defined that CD45 marked leukocytes, CD66 
marked neutrophils, CD14 marked monocytes, CD68 
marked macrophages, CD16 marked monocytes/
macrophages/dendritic cells (DCs), CD11C marked 

Fig. 1  Flowchart of data collection and analyses

https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
https://adex.genyo.es/


Page 6 of 16Sui et al. Journal of Translational Medicine          (2023) 21:109 

monocytes/DCs, CD123 marked plasmacytoid dendritic 
cells (pDCs), CD1C marked DC, CD56 marked NK cells, 
CD4 marked CD4+T cells, CD8 marked CD8+T cells, 
and CD20 marked B cells. The Spearman’s correlation 
coefficients (R2) of the tumor tissue expression between 
STAT1, OAS1, OASL, and PML and multiple immune 
cell markers in breast invasive carcinoma (BRCA) were 
obtained from GEPIA2 database (http://​gepia2.​cancer-​
pku.​cn/#​index) [37]. The gene expression matrix includ-
ing the mRNA level of STAT1, OAS1, OASL, PML, and 
multiple immune cell markers from 292 SLE patients’ 
whole blood samples were downloaded from GSE45291 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE45​291) for calculating Spearman’s correlation coef-
ficients (R2). The Spearman’s correlation analysis were 

performed in GraphPad Prism 9.0. The Spearman’s cor-
relation coefficients (R2) were presented by heatmaps 
(Fig.  5E and Fig.  5F) conducted by the pheatmap R 
package.

QIAGEN Ingenuity Pathway Analysis (QIAGEN IPA)
The fold changes and p-values of the DEGs were identi-
fied from the IDC/SLE combined expression matrix by 
the limma R package [29]. The DEGs were uploaded to 
the QIAGEN IPA server and performed with core expres-
sion analysis as previously described [40].

Software application
R is a free software environment for statistical comput-
ing and graphics and can be downloaded from https://​

Fig. 2  Identification and analyses of DEGs in IDC and SLE by GEO2R. A and B The volcano plots illustrate the differential gene expressions in five 
IDC (A) and five SLE (B) datasets. The negative log10-transformed p values (Y axis) are plotted against the average log2 fold changes (X axis) in gene 
expressions. Identified DEGs are shown in red (log2 (FC) > 1) and blue (log2 (FC) < -1). The p value cut-off is < 0.05. C and D Venn diagrams show 
intersected DEGs among five IDC (C) and five SLE (D) datasets. The area is proportional to the number of genes. E Venn diagram showing the total 
and intersected numbers of DEGs in IDC and SLE. F PPI network of top 10 genes out of the 27 overlapping DEGs based on BC values obtained from 
Cytoscape plug-in Cytohubba. Colors represent BC values from high (red) to low (yellow). G GO and KEGG enrichment analysis of 27 DEGs shown in 
E 

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45291
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45291
https://cran.r-project.org/mirrors.html
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cran.r-​proje​ct.​org/​mirro​rs.​html. RStudio is an integrated 
development environment for R, a programming language 
for statistical computing and graphics, and the RStudio 
Desktop Open Source Edition (AGPL v3) can be down-
loaded from https://​posit.​co/​downl​oad/​rstud​io-​deskt​op/. 
R version 4.1.3 and RStudio version 2022.02.3 were used in 
this study. Venn diagram in this study were drawn by the 
VennDiagram R package [41] or the Venn webtools web-
site (http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/). 
GraphPad Prism 9.0 (GraphPad Software Inc.,LLC) was 
purchased by The University of Oklahoma. Ingenuity IPA 
license was purchased from QIAGEN (https://​digit​alins​
ights.​qiagen.​com/​produ​cts-​overv​iew/​disco​very-​insig​hts-​
portf​olio/​analy​sis-​and-​visua​lizat​ion/​qiagen-​ipa/).

Results
The DEGs/hub genes identified by three bioinformatics 
methods enriched in the biological processes 
and pathways relating to virus defense, virus infection, 
and interferon
By using GEO2R, we defined |log2(FC)|> 1 and the 
p-value < 0.05 as the threshold in five databases of IDC 
and SLE according to the numbers of overlapped DEGs 
(Additional file 2: Table S6) in the method. We identified 
2019 DEGs in IDC (Fig. 2C), 89 DEGs in SLE (Fig. 2D), 
and 27 DEGs both in IDC and SLE (Fig. 2E). The top 10 
screened BC genes from the 27 DEGs were STAT1, IRF7, 
OAS1, OAS2, USP18, CMPK2, OASL, ISG15, IFI6, and 
OAS3 (Fig. 2F), and their ranks and scores were shown in 

Fig. 3  Identification and analyses of DEGs from the combined IDC and SLE datasets by differential gene analysis of the limma R package. A and 
D Principal component analysis of five IDC(A)/SLE(D) datasets before (upper panel) and after (low panel) elimination of batch effects. B and E The 
volcano plots of the genes from the combined matrix from five IDC(B)/SLE(E) studies after eliminating batch effects, and DEGs (p-value < 0.05) 
were plotted in red (log2 (FC) > 0.5) and blue (log2 (FC) < -0.5). C and F The heatmap of the DEGs in IDC(C)/SLE(F) expression in normal controls 
and IDC/SLE patients. The DEGs in IDC/SLE were the DEGs shown in (B)/(E) with red or blue. G. Venn diagram showing the total and intersected 
numbers of DEGs in IDC and SLE. H PPI network of top 10 genes out of the 58 overlapping DEGs based on BC values obtained from Cytoscape 
plug-in Cytohubba. Colors represent BC values from high (red) to low (yellow). I GO enrichment analysis based on the 58 DEGs shown in (G). J KEGG 
enrichment analysis based on the 58 DEGs shown in (G)

https://cran.r-project.org/mirrors.html
https://posit.co/download/rstudio-desktop/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
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Additional file 1 Table S1. The DEGs are enriched in the 
biological processes relating to virus defense and inter-
feron such as Defense response to virus, Innate immune 
response, and Response to virus, and pathways relating 
to virus infection such as Influenza A and Epstein-Barr 
virus infection (Fig. 2G).

We also  combined five IDC/SLE database for dif-
ferential gene expression analysis. The batch effects 
were eliminated in the combined IDC matrix (Fig.  3A) 
and the combined SLE matrix (Fig.  3D). We defined 
|log2(FC)|> 0.5 and the p-value < 0.05 as the threshold 
in five databases of IDC and SLE according to the num-
bers of DEGs (Additional file  3: Table  S7). The results 

from differential gene analyses indicated that the DEGs 
in IDC (Fig. 3B) and SLE (Fig. 3E) differentially expressed 
between the control and patients (Fig.  3C and Fig.  3F). 
There were 58 DEGs were identified from both IDC and 
SLE (Fig.  3G). The top 10 screened BC genes from the 
58 DEGs were IRF7, MX1, STAT1, OASL, MX2, IFIT3, 
OAS1, DHX58, IFI6, and IFI44 (Fig. 3H), and their ranks 
and scores were shown in Additional file 1 Table S2. The 
DEGs enriched in the biological processes relating to 
defense and interferon such as Type I interferon signaling 
pathway and Defense response (Fig. 3I), and the pathways 
relating to virus infection and inflammation reactions 

Fig. 4  Weighted co-expression network analysis for identification and analyses of hub genes from the combined IDC and SLE datasets. A and D 
The left panel was the analysis of the scale-free fit index with multiple soft-thresholding powers (β), and the right panel was the analysis of the 
mean connectivity with multiple soft-thresholding powers. Both of them were based on the combined gene expression matrix of IDC(A)/SLE(D) 
from the five IDC/SLE studies. B and E Correlations between MEs and groups indicating the module-trait associations. Every row represented a ME, 
and every column represented the group. The groups of (B) contain control and IDC patients. The groups of (E) contain control and SLE patients. C 
and F The heatmaps with topology showing gene network of IDC(C)/SLE(F). The rows and columns represented gene list. The gene dendrogram 
and module assignment were shown at the left and top. G Venn diagram showing the total and intersected numbers of hub gene (|kME|≥ 0.8) in 
IDC and SLE. H PPI network of top 10 genes out of the 96 overlapping hub genes based on BC values obtained from Cytoscape plug-in Cytohubba. 
Colors represent BC values from high (red) to low (yellow). I GO and KEGG enrichment analysis based on the 96 hub genes shown in (G)
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such as Influenza A, Measles, Th17 cell differentiation 
(Fig. 3J).

The combined IDC/SLE database were used for 
WGCNA. In combined IDC expression matrix, there 
were 10,949 genes for WGCNA. As the sample tree 
in Additional file  6: Figure S3 shows, there were no 
outliers (the samples with obvious abnormal gene 
expression) in IDC. So, no samples were removed 
(97 controls and 237 IDC samples). In combined SLE 
expression matrix, we removed GSM2666765 (control) 
and GSM4681556 (SLE), because they were outliers in 
Additional file 5: Figure S4. So, there were 3,857 genes 
and 372 samples (139 controls and 233 SLE samples) 
for subsequent WGCNA. From the WGCNA results of 

IDC, MEturquoise and MEbrown were significantly dif-
ferent (p < 0.1), and they were considered as the inter-
esting modules in IDC (Fig.  4B). From the WGCNA 
results of SLE, MEgreen, MEturquoise, MEblue, and 
MEyellow were significantly different (p < 0.1), and 
they were considered as the interesting modules in SLE 
(Fig. 4E). There were 6,410 genes in IDC and 162 genes 
in SLE that identified as hub genes from these interest-
ing modules. There were 96 hub genes were identified 
from both IDC and SLE (Fig. 4G). The top 10 screened 
BC genes from the 96 hub genes were STAT1, STAT3, 
MX1, TRIM21, LAP3, FIS1, OASL, HAGH, MPI, and 
RPL8 (Fig. 4H), and their ranks and scores were shown 
in Additional file 1: Table S3. The DEGs enriched in the 

Fig. 5  Gene identification by using three bioinformatics methods and their expression profiles in multiple cancers and autoimmune diseases 
and their correlation with immune cell markers in BRCA and SLE. A Schematic plot of the combination with three bioinformatics tools. B The 
mRNA levels of STAT1, OAS1, OASL, and PML from the combined IDC (left panel) and SLE (right panel) datasets in this study. C Bar plots from GEPIA 
database with the gene expression profile (OAS1, OASL, PML, and STAT1) across multiple types of tumor samples and paired normal tissues. The 
height of bar represented the median expression of certain tumor type or normal tissue, and the horizontal axis indicated tumor names. D The 
heatmap from ADEx database indicating the values of fold change of OAS1, OASL, PML, and STAT1 between multiple types of autoimmune diseases 
and paired normal individuals. E and F The heatmaps represent the Spearman’s correlation coefficients (R2) between DEGs expressions (OAS1, 
OASL, PML, and STAT1) and multiple immune cell marker genes (the encoded protein by the gene) in BRCA tumor (E) or SLE (F). The Spearman’s 
correlation coefficients (R2) were labeled at nodes of every two genes in heatmaps
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biological processes relating to virus such as Defense 
response to virus and Response to virus, and the path-
ways relating to virus infection such as Measles and 
Epstein-Barr virus infection (Fig. 4I).

STAT1, OAS1, OASL, and PML were identified as the shared 
differentially expressed genes in IDC and SLE. And STAT1 
and OAS1 indicated the opposite expressed tendency 
across IDC and SLE
As the schematic plot shows in Fig.  5A, STAT1, OAS1, 
OASL, and PML differentially expressed on both IDC 
and SLE according to the three bioinformatics methods 
(GEO2R, the limma R package, and WGCNA). From 
the combined databases in this study, STAT1 and OAS1 
were increased in IDC while reduced in SLE manifesting 
opposite expression tendency on IDC and SLE (Fig. 5B). 
And OASL and PML were elevated in both IDC and SLE 
(Fig.  5B).  The shared differentially expressed genes in 
IDC and SLE  enriched in the biological processes and 
pathways relating to virus defense, virus infection, and 
interferon (Additional file 4: Figure S1).

STAT1, OAS1, OASL, and PML increased in most 
of malignancies. In autoimmune diseases, OAS1, OASL, 
and STAT1 increased while PML was not significant. Their 
mRNA levels correlated with immune cell markers of innate 
immunity in BRCA and SLE
Regarding the verification in malignancy, we found that 
the gene expression of STAT1, OAS1, OASL, and PML 
were increased in most of the malignancies in compari-
son with paired normal tissues (Fig. 5C). Regarding the 
verification of autoimmune diseases, the heatmap indi-
cated that the fold changes of OAS1, OASL, and STAT1 
between multiple autoimmune diseases and paired nor-
mal individuals were more than one in SLE, systemic 
sclerosis (SSc), and Sjögren’s syndrome (SjS), especially 
in SLE, while the fold changes of PML were near zero, 
which means no significant difference between the 
patients with autoimmune disease and normal indi-
viduals (Fig.  5D). According to correlation analysis, 
expression of STAT1, OAS1, OASL, and PML on BRCA 
tumor tissue were  positively correlated with immune 
cell markers from both innate immunity and adaptive 

Fig. 6  Signaling pathway analyses in IDC and SLE. A Schematic plot of signaling pathways analyses. B The four overlapped KEGG pathways from 24 
SLE specific genes and 777 IDC specific genes. C The six overlapped IPA pathways from 24 SLE specific genes and 777 IDC specific genes. D and E 
The mRNA levels of the components in IFN-JAK-STAT pathway from the combined IDC (D) and SLE (E) datasets in this study. F Schematic diagram of 
IFN-JAK-STAT pathway changes in IDC and SLE
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immunity (Fig. 5E), while expression of STAT1, OAS1, 
OASL, and PML in whole blood of SLE was positively 
correlated with most of immune markers in innate 
immunity (Fig. 5F).

The DEGs/hub genes in IDC and SLE are enriched 
in the IFN‑JAK‑STAT pathway
As the schematic plot in Fig. 6A shows, we identified 777 
genes specific in IDC and 24 genes specific in SLE using 
the three bioinformatics methods (GEO2R, the limma R 
package, and WGCNA). The 69 KEGG pathways from 
the 777 genes in IDC (Additional file 5: Figure S2A) and 
13 KEGG pathways from the 24 genes in SLE (Additional 
file  5: Figure S2A) were identified, while the 406 IPA 
pathways from the 777 genes in IDC and six IPA path-
ways from the 24 genes in SLE (Fig. 6A) were identified 
after filtering the pathway with the gene counts less than 
three (Additional file  1: Table  S4 and Table  S5). There 
were four overlapped KEGG pathways from IDC and SLE 
(Fig.  6B), and there were six overlapped IPA pathways 
from IDC and SLE (Fig. 6C). These intersected pathways 
were IFN-JAK-STAT pathway-based pathways or biologi-
cal processes, such as viral infections and immune signal-
ing (Fig. 6B and Fig. 6C).

According to the combined IDC expression matrix, 
the mRNA level of PML, OASL, STAT2, STAT3, JAK1, 
IFNGR1, IFNGR2, IFNAR1, IFNAR2, and IL10RB 
increased, while the mRNA level of OAS1, IRF7, IRF9, 
STAT1, JAK2 JAK3, and TYK2 decreased in IDC 
(Fig.  6D). According to the combined SLE expression 
matrix, the mRNA level of PML, OAS1, OASL, STAT1, 
STAT2, STAT3, and IRF7 increased in SLE (Fig.  6E). 
Hence, the mRNA levels of components in IFN-JAK-
STAT pathway changed in IDC and SLE (Fig. 6F), which 
indicated that the IFN-JAK-STAT pathway was both rel-
evant to the initiation of IDC and SLE.

Discussion
In the present study, we found the mRNA levels of 
STAT1, OAS1, OASL, and PML were differential 
expressed in both  IDC and SLE by using three different 
bioinformatics tools of GEO2R, the limma R package and 
WGCNA. From the combined databases in this study, the 
mRNA levels of STAT1 and OAS1 were increased in IDC 
while reduced in SLE manifesting the opposite expres-
sion tendency across cancer and autoimmune disease. 
And the mRNA levels of OASL and PML were elevated 
in both IDC and SLE. According to pathway analysis of 
KEGG and IPA, both IDC and SLE were correlated with 
the changes of multiple components involved in the IFN-
JAK-STAT pathway.

The main results of this study are consistent with ear-
lier findings. In IDC, we found that the mRNA levels of 

OAS1 and STAT1 were downregulated (Fig. 5B, Fig. 6D 
and Fig. 6F), which has also been reported in other can-
cers [42–44]. Moreover, OAS1 negatively regulated the 
expression levels of interferon responsive genes (IRGs), 
including OASL [45, 46], which agrees with our data that 
the mRNA levels of STAT1 and OAS1 were both down-
regulated in IDC. Additionally, our results indicated 
the upregulation of PML in IDC with downregulated/
deficient STAT1.  It was shown that interferon respon-
sive pathways redirected toward STAT3 responses in the 
absence of STAT1, and STAT3 was able to regulate PML 
expression [47, 48]. In SLE, the mRNA level of STAT1, 
OAS1, OASL, and PML were upregulated (Fig.  5B, 
Fig.  6E and Fig.  6F), which were consistent with previ-
ous publications [49, 50]. Viral infections generated IFNs, 
which were accompanied by the transcription of OASL, 
and activated IFN responsive pathways after upregulating 
IFN regulated genes including OAS1 and STAT1. And 
enhanced IFN responsive pathways in viral infections 
tend to jeopardize the immune balance thereby develop-
ing autoimmune disorders such as SLE [51]. Also, other 
studies showed that STAT1 was essential in innate immu-
nity and positively correlated with the susceptibility of 
viral infections [50]. Furthermore, both mRNA and pro-
tein levels of STAT1 presented positive causal relation-
ship with SLE [49, 52, 53]. Hence, in patients with IDC, 
STAT1 and OAS1 downregulation may change transcrip-
tional regulation in IFN responses thereby  facilitating 
tumorigenesis. In patients with SLE, increased interferon 
signaling, especially STAT1 and OAS1, may facilitate dis-
ease initiation.

The IFN-JAK-STAT pathway has been well-studied in 
the fields of oncology and autoimmunity. And we iden-
tified it from the differences between the normal and 
patients based on clinical samples in IDC and SLE. The 
IFN-JAK-STAT pathway plays pivotal roles in anti-viral 
immune defense [54]. Since IFN was firstly described 
as a crucial molecule in blocking viral infections [55], 
the IFN family was successively considered as a central 
components contributing host-innate defense against 
viral pathogens [54]. The JAK/STAT signaling pathway 
transmit extracellular chemical signals to the nucleus for 
downstream gene transcription. The JAK/STAT pathway 
is comprised of cell receptors, JAK proteins (JAK1-3 and 
TYK2), and STAT proteins (1–4, 5a, 5b, and 6) [56]. The 
tyrosine residues on the tail of receptors are phosphoryl-
ated after binding of IFNs [57]. The phosphorylation of 
receptors activates JAKs to phosphorylate STATs by ren-
dering an accessible binding site for STAT proteins due 
to the creation of a phosphotyrosine-based motif [54]. 
The STAT1-STAT1 homodimer or the STAT1-STAT2 
heterodimer binding with a cytoplasmic IRF9 form the 
complex and translocate from cytosol into the nucleus to 
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bind to IFN-stimulated response element (ISRE) to trig-
ger the transcription of the IFN-stimulated genes (ISGs) 
and exerting IFN-α effects [58]. From our results, on one 
hand, the mRNA levels of STAT1, OAS1, OASL, and 
PML were both differentially expressed in IDC and SLE 
(Fig. 5A) by three bioinformatics tools including GEO2R 
(Fig.  2), the limma R package (Fig.  3), and WGCNA 
(Fig.  4). Furthermore, functional enrichment analysis in 
each mode indicated the association of diseases (IDC and 
SLE) with virus infections and viral defense responses 
(Fig.  2G, Fig.  3I, Fig.  3J, and Fig.  4I). Furthermore, the 
mRNA levels of STAT1, OAS1, OASL, and PML corre-
lated with the markers of innate immunity in IDC and 
SLE (Fig.  5E and Fig.  5F). On the other hand, pathway 
analysis indicated that the onsets of IDC and SLE both 
were correlated with the changes of multiple compo-
nents in the IFN-JAK-STAT signaling pathway, includ-
ing STAT1, OAS1, OASL, and PML (Additional file  5: 
Figure S2, Additional file  1: Table  S4, and Table  S5). A 
schematic plot indicated the related components in inter-
feron response pathways (Fig.  6F) and their changes in 
IDC/SLE. To summarize, three types of IFNs (IFN-type 
I, type II, and type III) binding with corresponding recep-
tors phosphorylate STAT1 via JAK1/JAK2/TYK2 [59], 
and the phosphorylated STAT1 is transported into the 
nucleus with the form of homodimer and activate GAS 
(gamma interferon activation site) and ISRE (IRF9 and 
STAT2 dependent response). With the identical tendency 
of STAT1 mRNA level, OAS1 and IRF7 (identified by 
GEO2R and the limma R package) are important ISGs 
[60, 61]. Overall, STAT1, OAS1, and IRF7 in the IFN-
JAK-STAT pathway are oppositely  affected  in IDC and 
SLE.

Immune responses work during and/or after tumo-
rigenesis and autoimmune genesis anisotropically. Inad-
equate immunity caused by poor immune surveillance 
leads to tumorigenesis, while excessive immunity due 
to breakdown of immune tolerance causes autoimmune 
genesis. Indeed, multiple shared molecular mechanisms 
with opposite changes were reported to explain both 
tumorigenesis and autoimmune genesis such as TGF-β/
Smad signaling and nuclear factor kappa-B (NF-κB) 
signaling. The TGF-β/Smad axis works both on cancers 
and autoimmune diseases. For one thing, transforming 
growth factor beta (TGF-β) is a multifunctional regula-
tor in cancer immunity. TGF-β is able to delay tumori-
genesis by causing cell cycle arrest [62] and by reshaping 
tumor microenvironment (TME) [63] at early-stage. Fur-
thermore, TGF-β promotes tumor progression through 
PI3K/AKT/mTOR pathway activation [64], basic fibro-
blast growth factor (bFGF) signaling activation [65], the 

promotion of epithelial-mesenchymal transition (EMT) 
[66, 67], EMT-related immune surveillance [68, 69], and 
the inflammation induction by crosstalk with NF-κB 
signaling [70, 71] at late stage. The TGF-β/Smad signaling 
pathway works in a manner that, after the TGF-β binds 
with the corresponding proteins, the phosphorylated 
TGF-β receptors phosphorylate Smad2/3 for recruiting 
Smad4 to Smad2/3 complex for nuclear entry [64]. Hence, 
Smad3 promotes cancer by influencing reshaping of 
TME [63]. Smad3-silence strategy is an enhanced immu-
notherapy in cancers [72], and targeting Smad3/Smad7 
enhances NK cells’ functions in anti-cancer immunity 
[73]. For another, the  TGF-β/Smad signaling pathway 
is also considered as a crucial regulatory pathway in auto-
immunity. The phosphorylated TGF-β receptors induce 
inhibitory Smad7 for a inhibition to the phosphorylation 
of Smad2/3 as a negative feedback [74]. Deficient Smad7 
associates with TGF-β/Smad3-IL-6 signaling activation 
and Th17-induced immune responses [75], which lead 
to series of inflammatory damages. And it has been con-
firmed that targeting Smad7 strategy could ameliorate 
autoimmune renal disease in animal models [76]. NF-κB 
signaling is considered as an another example of path-
ways that both work in cancers and autoimmune diseases 
[77, 78]. For one thing, NF-κB signaling is being one of 
the pathways associated with immune system malfunc-
tions [79, 80], which leads to tumorigenesis [81–87]. 
Study have shown that posttranslational modifications 
of NF-κB such as ubiquitination [88] and phosphoryla-
tion [84], are vital in regulating its activity, especially in 
necroptosis, autophagy, and apoptosis [83]. Such activity 
suggests an ubiquitous activity in cancer development, 
it is shown that not only the protein expression level but 
also the posttranslational modifications can be changed 
in different types of cancers. Phosphorylated NF-κB at 
Ser536 increases the pancreatic cancer cell motility [84]. 
Poly-ubiquitination of NF-κB signaling components such 
as IKB and IKKs can activate the nuclear transportation 
of NF-κB [80, 88]. In addition to the influence  in pro-
tein levels, NF-κB signaling involves in tumorigenesis 
on genetic levels such as epigenetic effects (H3K9me3) 
and the stability of tumor suppressor (PTEN) [89, 90]. 
For another, NF-κB signaling contributes to autoim-
mune genesis and progression via the imbalance of 
multiple immune components. The canonical p50/p65 
NF-κB signaling cascades are able to activate down-
stream immune responses of T cell receptors (TCRs), B 
cell receptors (BCRs), toll-like receptors(TLRs), and pro-
inflammatory cytokines (TNFα and IL-1β) [91]. NF-κB 
signaling cascades contribute to the functional matu-
ration of DCs in innate immune system, and they also 
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could decelerate the activation of autoreactive T cells and 
favor the survival of B cells in innate adaptive system [92, 
93]. Moreover, genetic associations cause autoimmune 
disorders by driving NF-κB signaling cascades [91].

We would like to highlight the strengths in choosing 
bioinformatic methods and disease models in this study. 
As for methods, we conducted differential analysis with 
multiple GEO databases (five IDC and five SLE) with 
GEO2R, the limma R package (after batch effect elimina-
tion), and WGCNA. With limitations of potential devia-
tions from one of the methods, numerous studies tend to 
be conducted with one of the three bioinformatics tools. 
Although there are similarities between GEO2R and the 
limma R package, our study is able to render an availa-
ble comparison among them, which is inspiring for data 
mining processes in the future. From our results, dif-
ferent genes were identified from the three modes. We 
speculated that the possible reason of different outcome 
of DEGs/hub genes among three bioinformatics methods 
was the batch effects. There should be batch effects in 
method of GEO2R, because the data were from different 
databases while the combined data were eliminated batch 
effects. However, those genes enriched almost at the sim-
ilar biological events/pathways according to functional 
enrichment analysis (Fig. 2G, Fig. 3I, Fig. 3J,and Fig. 4I), 
which indicated the three methods are reliable and are 
able to do mutual authentications for one another. As 
for the disease model, breast cancer is the most common 
type of cancer among female population, and IDC is the 
most common type of breast cancer with high incidence 
in females [22, 24, 94, 95], while SLE is prevalent in a 
large population with a much higher incidence in females 
than males [26, 27]. Furthermore, both IDC and SLE are 
prevalent among females of childbearing age [22, 24, 26, 
27, 94, 95]. Hence, since there are comparable physi-
cal conditions between the subjects with IDC and SLE, 
we believed that IDC and SLE are ideal and reasonable 
models to study the discrepancies and the commonalities 
between tumorigenesis and autoimmune genesis.

From this study, the mRNA levels of STAT1, OAS1, 
OASL, and PML were found to be differentially expressed 
in both IDC and SLE by using three different bioin-
formatics tools of GEO2R, the limma R package and 
WGCNA. From the combined databases in this study, 
the mRNA levels of STAT1 and OAS1 were increased 
in IDC while reduced in SLE manifesting the opposite 
expression tendency across cancer and autoimmune dis-
ease. According to pathway analysis, both IDC and SLE 
were correlated with the changes of multiple components 
involved in the IFN-JAK-STAT signaling pathway. We 
believe that the  STAT1 and OAS1-associated IFN-JAK-
STAT signaling pathway could explain the commonali-
ties during tumorigenesis and autoimmune genesis. We 

hope that it could be beneficial for precion medicine in 
the future.

Conclusion
In conclusion, we explored the resemblances  of gene 
expression changes  during tumorigenesis and autoim-
mune genesis and their effects on the immune response 
for the maintaining of immune homeostasis. The expres-
sion levels of STAT1 and OAS1 manifest the opposite 
expression tendency across cancer and autoimmune 
disease.  They  are components in  the IFN-JAK-STAT 
signaling pathway related  to both tumorigenesis and 
autoimmune genesis. STAT1 and OAS1-associated IFN-
JAK-STAT signaling may explain the commonalities dur-
ing tumorigenesis and autoimmune genesis and render 
significant information for more precise treatment from 
the point of immune homeostasis.
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BRCA​	� Breast invasive carcinoma
CESC	� Cervical squamous cell carcinoma and endocervical 

adenocarcinoma
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CHOL	� Cholangio carcinoma
COAD	� Colon adenocarcinoma
DLBC	� Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA	� Esophageal carcinoma
GBM	� Glioblastoma multiforme
HNSC	� Head and neck squamous cell carcinoma
KICH	� Kidney chromophobe
KIRC	� Kidney renal clear cell carcinoma
KIRP	� Kidney renal papillary cell carcinoma
LAML	� Acute myeloid leukemia
LGG	� Brain lower grade glioma
LIHC	� Liver hepatocellular carcinoma
LUAD	� Lung adenocarcinoma
LUSC	� Lung squamous cell carcinoma
MESO	� Mesothelioma
OV	� Ovarian serous cystadenocarcinoma
PAAD	� Pancreatic adenocarcinoma
PCPG	� Pheochromocytoma and paraganglioma
PRAD	� Prostate adenocarcinoma
READ	� Rectum adenocarcinoma
SARC​	� Sarcoma
SKCM	� Skin cutaneous melanoma
STAD	� Stomach adenocarcinoma
TGCT​	� Testicular germ cell tumors
THCA	� Thyroid carcinoma
THYM	� Thymoma
UCEC	� Uterine corpus endometrial carcinoma
UCS	� Uterine carcinosarcoma
UVM	� Uveal melanoma
SSc	� Systemic sclerosis
RA	� Rheumatoid arthritis
T1D	� Type 1 diabete
SjS	� Sjögren’s syndrome
PTPRC	� Protein tyrosine phosphatase receptor type C
CEACAM1	� Carcinoembryonic antigen-related cell adhesion molecule 1
FCGR3B	� Fc Gamma Receptor IIIb
ITGAX	� Integrin subunit alpha X
IL3RA	� Interleukin 3 receptor subunit alpha
NCAM1	� Neural cell adhesion molecule 1
MS4A1	� Membrane spanning 4-domains A1
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