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Abstract 

Background  Colorectal cancer (CRC) is one of the most prevalent cancers, with over one million new cases per 
year. Overall, prognosis of CRC largely depends on the disease stage and metastatic status. As precision oncology 
for patients with CRC continues to improve, this study aimed to integrate genomic, transcriptomic, and proteomic 
analyses to identify significant differences in expression during CRC progression using a unique set of paired patient 
samples while considering tumour heterogeneity.

Methods  We analysed fresh-frozen tissue samples prepared under strict cryogenic conditions of matched healthy 
colon mucosa, colorectal carcinoma, and liver metastasis from the same patients. Somatic mutations of known 
cancer-related genes were analysed using Illumina’s TruSeq Amplicon Cancer Panel; the transcriptome was assessed 
comprehensively using Clariom D microarrays. The global proteome was evaluated by liquid chromatography-cou-
pled mass spectrometry (LC‒MS/MS) and validated by two-dimensional difference in-gel electrophoresis. Subsequent 
unsupervised principal component clustering, statistical comparisons, and gene set enrichment analyses were calcu-
lated based on differential expression results.

Results  Although panomics revealed low RNA and protein expression of CA1, CLCA1, MATN2, AHCYL2, and FCGBP 
in malignant tissues compared to healthy colon mucosa, no differentially expressed RNA or protein targets were 
detected between tumour and metastatic tissues. Subsequent intra-patient comparisons revealed highly specific 
expression differences (e.g., SRSF3, OLFM4, and CEACAM5) associated with patient-specific transcriptomes and 
proteomes.

Conclusion  Our research results highlight the importance of inter- and intra-tumour heterogeneity as well as individ-
ual, patient-paired evaluations for clinical studies. In addition to changes among groups reflecting CRC progression, 
we identified significant expression differences between normal colon mucosa, primary tumour, and liver metastasis 
samples from individuals, which might accelerate implementation of precision oncology in the future.
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Introduction
Colorectal cancer (CRC) is the third most common can-
cer and cause of cancer-related death [1]. Although early-
stage CRC has a relatively good prognosis, with a 5-year 
survival of almost 90%, prognosis of metastatic CRC 
(mCRC) is poor, with a 5-year survival of only 15% [2]. 
In this context, over 50% of CRC patients either present 
with liver metastasis at the primary diagnosis or develop 
progression shortly thereafter [3, 4]. Furthermore, knowl-
edge about disease progression and how tumour hetero-
geneity contributes to metastasis or treatment tolerance 
remains limited [5].

To understand the underlying molecular changes that 
drive the carcinogenesis of mCRC, The Cancer Genome 
Atlas (TCGA) has conducted extensive genomic, epig-
enomic, and transcriptomic profiling studies to identify 
distinguishing features [6–9]. These studies have under-
scored the value of molecular characterization in addi-
tion to histological assessment for stratification of mCRC 
patients while identifying genomic features unique to 
mCRC tumorigenesis [10]. Although it has been shown 
that the mutation status of specific oncogenes such as 
HER2 in breast cancers, EGFR in lung cancers, and KRAS 
in colon cancers are crucial for targeted treatment [11, 
12], genomic markers fail to identify eligible patients or 
predict therapy outcomes in the majority of cases. For 
patients with advanced or metastatic cancer, Marquart 
and colleagues estimated in 2018 that only 8.3% would 
be eligible for genome-driven drugs and that only 4.9% 
would benefit from these drugs [13]. In general, combin-
ing proteomics and genomics to proteogenomic analyses 
might improve individualized cancer medicine [14].

The proteome represents a central position: while 
it is regulated downstream by genetic expression and 
reacts to signals from the environment and treatments, 
the main task of proteins is to mediate the biochemi-
cal activities of cells and organs [15]. As such, proteins 
can help to determine the significance of a physiologi-
cal phenotype and a point of intervention for drug and 
health treatments [16–18]. Indeed, several preclinical 

studies have identified the CRC proteome to explain the 
biological changes that affect this cancer. Interestingly, 
most proteomic studies to date have focused on differ-
entially expressed proteins, though the patients used as 
the source of primary colorectal tumour samples and 
those for liver metastasis samples differed. For instance, 
Li et  al. identified in 2020 metastasis-related factors 
that were differentially expressed in synchronous soli-
tary liver metastasis compared to primary colon cancer 
[19]. By integrating the genomics, proteomics, and phos-
phoproteomics of 480 clinical tissues, molecular signa-
tures are used to characterize three CRC subtypes. The 
authors detected high similarities with primary tumours 
at genetic but not proteomic levels. Similarly, Sardo et al. 
recently reviewed panomics approaches in CRC beyond 
genomic data, e.g., predictive proteomic targets in clini-
cal settings [20]. However, little is currently known about 
panomics applied to individual-matched patient samples.

The purpose of this study was to perform an integrated 
panomics analysis of genomics, transcriptomics, and 
proteomics in mCRC by using paired clinical samples 
that characterize intra- and inter-tumour heterogeneity 
during tumour progression.

Materials and methods
Overview of the patient cohort
Paired tissue samples from normal adjacent colon mucosa 
(NM), corresponding primary colorectal carcinoma (T), 
and corresponding liver metastasis (LM) were obtained 
from four patients (P1-4). For one patient, we collected 
eight samples: normal colon mucosa, six samples from 
different locations within the primary tumour, and one 
sample from the corresponding liver metastasis. Table 1 
presents all patient characteristics. All patients were 
diagnosed with metastasized colorectal carcinoma and 
underwent primary resection. Samples were surgically 
removed at the Department of Surgery, University Hos-
pital Schleswig–Holstein, Campus Lübeck, and stored 
in liquid nitrogen until processing. All patients provided 
informed written consent. The Ethics Committee of the 

Table 1  Clinical parameters of the patient cohort

f, female; m, male; TNM, Tumour Node Metastasis Classification of Malignant Tumours
a The exact age of individual patients was removed to avoid patient identification

Patient Sex Age range 
(years)a

Staging (TNM) Grading Location of the 
primary tumour

Overall survival 
(months)

Months between resection of 
the primary tumour and liver 
metastasis

1 f 51–55 pT4 pN1 M1 G3 Ascending colon 28 1.2

2 m 41–45 pT1 pN0 M1 G2 Sigmoid colon 79 36.4

3 f 61–65 pT4a pN2a M1 G2 Coecum 16 0

4 m 71–75 pT3 pN1b M1 G2 Sigmoid colon  > 96 1.3
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University of Lübeck gave ethical approval for this work 
(No. 07-124 and 16-282).

Sample preparation concerning intra‑tumour 
heterogeneity
All samples were manually divided into halves on dryice 
pre-chilled plates to allow for subsequent downstream 
analysis of intra-tumour heterogeneity while maintain-
ing low temperature. Six-micron sections from both 
sides of the two halves were cut and stained with hae-
matoxylin and eosin (H&E) for histopathologic classi-
fication. Semi-automated frozen aliquots (1.5  mm core) 
were subsequently taken from the areas with the high-
est tumour cell (or mucosal cell) representativity by 
using a CryoXtract CXT350 (CryoXtract Instruments, 
USA) at a temperature below − 100 °C; the samples were 
added to 700 µl lysis buffer (Qiagen buffer RLT plus, 1% 
β-mercaptoethanol). Additional data show representative 
images before and after the coring process (Additional 
file 1: Fig. S1).

For extraction of nucleic acids and proteins, AllPrep® 
DNA/RNA Micro Kit (Qiagen, Germany) was used 
according to the manufacturer’s instructions with addi-
tional steps for AllPrep® DNA/RNA/Protein Mini Kit 
(Qiagen, Germany) and PureLink™ DNase (Invitrogen, 
USA). This extraction protocol resulted in one 100  µl 
DNA, 60 µl RNA, and 10 µl miRNA solution as well as in 
a protein pellet dissolved in 200 µl lysis buffer. One hun-
dred microlitres of each protein sample was purified with 
ReadyPrep 2-D Cleanup Kit (Bio-Rad, USA). The purified 
protein pellet was dissolved in 22 µl DIGE buffer [30 mM 
TRIS, 7 M urea, 2 M thiourea, 4% (w/v) CHAPS]. A 2 µl 
aliquot was used to determine total protein concentra-
tion with EZQ™ Protein Quantitation Kit (Life Technolo-
gies, USA). The remaining protein solution was stored at 
− 80 °C until analysis.

Targeted detection of somatic mutations in cancer‑related 
genes
TruSeq™ Amplicon Cancer Panel (TSACP, Illumina, San 
Diego, USA) is a multiplexed targeted amplicon sequenc-
ing (tNGS) assay to detect somatic mutations frequently 
reported as related to cancer. Library preparation was 
carried out according to Illumina’s TSACP standard pro-
tocol. All samples were sequenced in two runs with the 
MiSeq™ next-generation sequencing (NGS) system. To 
this end, the MiSeq Reagent Kit V2 was utilized at 300 
cycles.

Several analysis procedures, including demultiplex-
ing and FASTQ file generation, were performed using 
MiSeq reporter software (Real-Time-Analysis (RTA), 
Version: 1.18.54). Starting with FASTQ files containing 
raw paired-end data, an in-house software pipeline was 

applied for data analysis. Briefly, reads were mapped to 
the reference genome (GRCH38/hg38) with Burrows‒
Wheeler Aligner (BWA-MEM v.0.7.17-4). PICARD 
TOOLS (v.2.3.2-1) was employed to sort the resulting 
SAM files and for conversion to the BAM format. Adjust-
ment of quality scores was carried out using the Base 
Quality Score Recalibration (BQSR) method provided 
by GATK (v. 4.2.6.1). The preprocessed BAM files are 
input for several working steps that are provided by tools 
of the GATK best practices workflow (GATK v. 4.2.6.1) 
for detection of somatic short variants [single-nucleotide 
variants (SNVs) and insertions/deletions (Indels)]. This 
workflow includes the use of Mutect2 for computation 
of a basic callset of candidate variants and subsequent 
filtering with the FilterMutectCalls algorithm of GATK. 
Ensembl Variant Effect Predictor (VEP, release 106) was 
applied to annotate the filtered variants with information 
regarding the effects of the somatic variants detected. 
Next, annotations (in mutation annotation format, MAF) 
were imported into R (v. 4.2.0). Several cleaning/filter-
ing procedures were performed (e.g., entries in the call 
set not mapping to genes included in TSCAP, variants 
with low coverage or variants with population allele fre-
quency > 0.001 in the gnomAD or 1k genome databases 
were removed). The filtered data were set as the input for 
the R package maftools (package version 2.12.0) for data 
visualization and computation of summary metrics for 
the data set [21].

Transcriptome profiling
Data generation was performed according to the vendor’s 
original protocol using GeneChip™ WT Pico Reagent Kit 
(Thermo Scientific, USA), followed by hybridization with 
the Clariom D array (Clariom™ D Pico Assay, human, 
Thermo Scientific). Clariom D array data were imported 
into R (v4.1.2) using the oligo package (v1.60.0) preproc-
essed utilizing the robust multichip average algorithm 
(RMA). Annotations were added using the annotateE-
set function implemented in the affycoretools (v1.68.0) 
package and clariomdhumantranscriptcluster.db (v8.8.0) 
as annotations. Probes not matching known genes were 
removed before analysis.

Mass spectrometry profiling
Equal aliquots of 47 µg of protein from each protein sam-
ple were diluted with DIGE buffer [30  mM TRIS, 7  M 
urea, 2 M thiourea, 4% (w/v) CHAPS] to a total volume 
of 50 µl and cleaned with a filter-aided sample prepara-
tion protocol (FASP) [22]. Dried protein pellets were 
diluted in 40  µl of 5% formic acid before mass spectro-
metric analysis, and half of the sample was prepared on 
a StageTip as previously described [23]. Peptides were 
separated chromatographically using a 25  cm-long C18 
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column (SilicaTip™ 360 µm OD, 100 µm ID, New Objec-
tive, USA) and an EASY-nLC1000™ nanoflow LC system 
(Thermo Fisher Scientific, USA). With a 300 nl/min flow 
rate, peptides were eluted at a linear gradient from 2 to 
26% solvent B (0.1% formic acid in 98% acetonitrile) for 
120 min. Mass spectrometric detection of the eluted pep-
tides was carried out using a Q Exactive™ Plus hybrid 
quadrupole-Orbitrap™ mass spectrometer (Thermo 
Fisher Scientific, Germany) in data-dependent mode. 
The survey mass spectrum was acquired at a resolution 
of 140,000 (at m/z 200) in the range of m/z 300–1650, 
targeting 5 × 106 ions. The MS/MS data for the 16 most 
intense precursors were obtained with higher-energy col-
lisional dissociation (HCD) set at 28% normalized colli-
sion energy following isolation of precursor ions with 
4Th targeting 2 × 105 ions with charge z > 1 at a resolu-
tion of 17,500.

Tandem mass spectra were extracted using Raw2MGF 
(in-house program), and the resulting Mascot generic 
files (.mgf) were searched against a concatenated Swis-
sProt protein database (Human taxonomy) using the 
Mascot 2.3.0 search engine (Matrix Science Ltd., UK). 
Carbamidomethylation of cysteines was set as a fixed 
modification, and deamidation of asparagine and glu-
tamine as well as oxidation of methionine were set as 
variable modifications. Up to two missed tryptic cleav-
ages were allowed, and the mass tolerance was set to 
10  ppm and 0.05  Da for precursor and fragment ions, 
respectively. Only peptides with individual MS/MS Mas-
cot scores above the significant threshold of E < 0.05 were 
accepted. Only proteins identified with at least two pep-
tides with a significance score and a 0.25% false discovery 
rate (FDR) were considered for further quantification.

The mass spectra acquired were analysed with in-
house-developed Quanti software (v2.5.4.4) using the 
relative abundance of proteins identified with more than 
two unique peptides [24]. The minimal requirements 
were a peptide length of six amino acids and FDR of 
0.01. The areas of chromatographic peaks were taken as 
peptide abundances, and the same peptides were quan-
tified in each nano-LC‒MS/MS data file using accurate 
mass and the order of elution as identifiers. The follow-
ing settings were applied: (1) enzyme "trypsin", (2) fixed 
modification "cysteine carbamidomethyl", (3) optional 
modifications "methionine oxidation, asparagine, and 
glutamine deamidation, N-terminal acetylation", and (4) 
a maximum of two missed cleavages. The results were 
analysed in the R scripting and statistical environment. 
Data were normalized by calculating the summed inten-
sities of all proteins in each sample and the median of all 
these summed intensities over the entire sample set. Each 
quantitative value was multiplied by the median/summed 
intensity, and the resulting values were log2 transformed. 

Differences in relative protein abundances between 
the treatment and control samples were assessed by a 
moderated t-test using the limma package [25]. Ben-
jamini‒Hochberg correction was applied for multiple 
comparisons.

Protein profiling by two‑dimensional gel electrophoresis
Paired patient clustering was validated by multiplex fluo-
rescent two-dimensional gel electrophoresis (2-D DIGE). 
Refraction-2D™ Labelling Kit (NH DyeAGNOSTICS, 
Germany) was used to label 50 µg of each protein sam-
ple, a pool of the tumour samples from P3, and an inter-
nal standard described previously [26]. Briefly, proteins 
were applied to an immobilized pH gradient gel strip (pH 
range 4–7, GE Healthcare, UK) for active rehydration 
and separated by SDS‒PAGE using precast 12.5% acryla-
mide gels (Bio-Rad, USA). Gel images were acquired with 
a Typhoon FLA 9000 scanner (GE Healthcare, UK) and 
analysed with Progenesis SameSpots (Nonlinear Dynam-
ics, USA; v4.5). Spots were aligned to a reference image, 
automatically detected, manually corrected, and normal-
ized to the internal standard.

Statistical analysis
LC‒MS/MS data were analysed using the R statistical 
environment. Proteins with missing values in at least one 
sample and proteins with unknown gene names were 
removed. The remaining data were normalized using 
quantile normalization from the preprocessCore R pack-
age (v1.52.1).

To cluster samples based on RNA and protein expres-
sion profiles, principal component analysis was per-
formed using the 100 proteins with the highest variance 
(FactoMineR R package, v2.4, [27]). Differentially abun-
dant genes and proteins were detected using a linear 
model approach from the limma package for R (v3.46.0) 
[25]. Two-group comparisons of NM vs. T, NM vs. LM, 
and T vs. LM were carried out across all patients. The 
within-patient correlation was estimated using the dupli-
cateCorrelation function Field [27] to correct repeated 
measurements in the same patients. A significance level 
of q < 0.01 and a relevant fold change (FC) of |log2FC| > 1 
were applied for two-group comparisons. Individual 
patient comparisons were evaluated by calculating the 
correlation factor ρ and plotting the protein FCs for NM 
vs. T and NM vs. LM against each other. Due to the more 
significant difference between individual patient compar-
isons, the effect size was set to |log2FC| > 2.

Identified proteins in each sample were further 
enriched against HALLMARK gene sets (MSigDB 
v7.1) using Generally Applicable Gene Set Enrichment 



Page 5 of 15Praus et al. Journal of Translational Medicine           (2023) 21:41 	

(GAGE), as implemented in the R package gage (v2.40.1) 
[28, 29].

2-D DIGE was analysed by SameSpots software (v4.5, 
Nonlinear Dynamics, USA). For ANOVA two-group 
comparisons, a p-value < 0.05 and |log2FC| > 1 were 
considered significant.

Data availability
The transcriptomic expression data are available at 
Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) under accession number GSE206800. 
The mass spectrometry proteomics data have been 
deposited at ProteomeXchange Consortium via the 
PRIDE partner [30] repository with the data set identi-
fier PXD036434.

Results
To compare differences between fresh frozen samples 
obtained from patients with advanced-stage CRC, we 
performed panomics by TruSeq™ Amplicon sequenc-
ing, Clariom D arrays, quantitative mass spectromet-
ric profiling, and 2-dimensional gel electrophoresis. For 
all patients, primary tumour tissue was collected before 
chemotherapy. All patients had synchronous liver metas-
tasis at the time of diagnosis (Table  1), and except for 
one patient (P2), all metastatic tissues were taken before 
exposure to chemotherapy. For P4, screening six different 
primary tumour locations was also possible.

Characterization of paired patient samples using gene 
expression data and mutation analysis
To identify genomic features, we analysed mutational 
data of the selected cohort (targeted sequencing). Fre-
quently mutated genes were APC (100%), GNA11 (100%), 
TP53 (100%), ERBB2 (75%), KRAS (62%), and ATM 
(62%). All 24 genes with a detectable mutation are pre-
sented in Additional file  1: Fig. S2. We did not observe 
any significantly unbalanced distribution between malig-
nant groups and individual patients when considering the 
mutated genes.

Gene expression profiles for 25,161 genes were 
retrieved from microarrays and visualized using the 
top 2000 most variable genes (Fig.  1a). Remarkably, the 
patient and non-disease groups clustered together. In 
total, 130 genes were identified as significantly differ-
entially expressed between NM and corresponding T 
samples (q-value < 0.01; |log2 FC| > 2; 62 more highly 
expressed in NM, 68 more highly expressed in T; Fig. 1b) 
and 154 genes between NM and corresponding LM (81 
more highly expressed in NM, 73 more highly expressed 

in LM, Fig. 1c). Conversely, no differences in gene expres-
sion between LM and T were detected (Fig. 1d).

Proteomic characterization of paired patient samples
Using a robust label-free workflow, all samples showed 
a high proteome depth and were included in subsequent 
analysis (Additional file 1: Fig. S3).

A total of 2885 proteins were identified by LC‒MS/MS. 
After removing missing values, unsupervised clustering 
using PCA for 2686 protein groups revealed one close 
cluster of all NM samples (Fig. 2a). In line with the tran-
scriptomics data, patients (P1-P4) and not disease groups 
(T, LM) presented distinct similarities pointing to indi-
vidual clinical phenotypes. Comparison between NM and 
T samples yielded 71 significantly differentially expressed 
proteins (q-value < 0.01 and |log2 FC| > 1), with 68 being 
(96%) up-regulated and three (4%) down-regulated in 
NM samples (Fig. 2b). Similarly, in NM and LM compari-
son, 69 proteins were significantly differentially expressed 
(q-value < 0.01 and |log2 FC| > 1): 61 (88%) up-regu-
lated and eight (12%) down-regulated in NM (Fig.  2c). 
The chloride channel accessory 1 protein (CLCA1) was 
detected at an exceptionally significant low level in both 
T and LM compared to NM (log2FCTvsNM = − 21.010 and 
log2FCLMvsNM = − 20.888).

The most surprising aspect of the data was that no pro-
tein could be detected as being significantly expressed 
between T and LM, highlighting inter-patient heteroge-
neity (Fig. 2d).

Comparison of gene and protein expression data 
and validation of the global proteome by 2‑D DIGE
Closer inspection of the gene (n = 25,161) and protein 
(n = 2686) expression data showed an overlap of three 
genes/proteins for the NM vs. T comparison (CA1, 
CLCA1, MATN2) and five for the NM vs. LM compari-
son (AHCYL2, CA1, CLCA1, FCGBP, MATN2) that were 
significantly expressed between the groups. All genes/
proteins were characterized by higher levels in normal 
material, as plotted based on gene and protein abun-
dances (Fig. 3). In agreement, increased expression of all 
targeted genes were associated with good prognosis in 
CRC when using data from Human Protein Atlas [31, 32].

Two-dimensional gel electrophoresis was performed 
to validate the clustering results for the proteome pro-
filing. SameSpots software detected 1334 spots per gel. 
PCA based on these results indicated a qualitatively simi-
lar result, suggesting a clear distinction between patients 
and sample groups (Additional file 1: Fig. S4).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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The individual progression proteomic landscape 
in individual patients
Based on the group comparison results, each primary 
tumour’s transcriptome and proteome were com-
pared with paired adjacent mucosa and associated 

liver metastasis. All tumour samples correlated phe-
notypically closely with their corresponding liver 
metastases but presented different gene/protein pro-
files compared to their adjacent normal mucosa. 
The Pearson correlation for gene expression and 

Fig. 1  Unsupervised principal component analysis (a) and volcano plots of differentially expressed genes between all three group comparisons 
for NM, T, and LM (b–d). The PCA plot displays all four individual patients (P1, blue; P2, yellow; P3, purple; P4, grey). The X- and y-axes show the first 
and second principal components, respectively. Volcano plots are presented with the fold-change of the corresponding comparison in logarithmic 
scale (x-axis) against the q-value (y-axis) of b tumour vs. normal mucosa, c metastasis vs. normal mucosa, and d metastasis vs. tumour comparisons. 
Significance thresholds (q-value < 0.01 and |log2FC| threshold of > 2) are indicated by dashed lines. Genes passing these cut-offs were considered 
significant and coloured in yellow. Genes passing the q-value but not the log2FC threshold are coloured in rose. Genes that were not significant but 
passed the log2FC threshold are indicated in blue
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protein abundance between the primary tumours and 
paired liver metastases compared to their adjacent 
mucosa was 0.6854 < r < 0.8281 for the proteome and 
0.6114 < r < 0.8133 for the transcriptome (Additional 
file 1: Figs. S5–S8).

Patient 1: female, right‑sided CRC (pT4)
Proteome analysis of NM1, T1, and LM1 revealed pro-
teome expression changes between the initial diagnosis 
and surgery for metastasis after one month. Of the 2,686 
evaluable proteins, 294 showed |log2 FC| > 2 in the NM1 

Fig. 2  Unsupervised principal component analysis (a) and volcano plots of differentially expressed proteins between all three group comparisons 
for NM, T, and LM (b–d). The PCA plot displays all four individual patients (P1, blue; P2, yellow; P3, purple; P4, grey). The X- and y-axes show the first 
and second principal components, respectively. Volcano plots are presented with the fold-change of the corresponding comparison in logarithmic 
scale (x-axis) against the q-value (y-axis) of b tumour vs. normal mucosa, c metastasis vs. normal mucosa, and d metastasis vs. tumour comparisons. 
Significance thresholds (q-value < 0.01 and |log2FC| threshold of > 2) are indicated by dashed lines. Proteins passing these cut-offs were considered 
significant and coloured in yellow. Proteins passing the q-value but not the log2FC threshold are coloured in rose. Proteins that were not significant 
but passed the log2FC cut-off are indicated in blue
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vs. T1 comparison and 251 in the NM1 vs. LM1 compari-
son (Additional file 1: Fig. S5a). The comparison between 
T1 and LM1 revealed 55 contrasting proteins (Additional 
file  1: Fig. S5b). Additional file  2: Table  S1 lists the top 
differentially expressed proteins of the three two-group 
comparisons. Among proteins with higher abundance in 
LM1 than T1, CD74 (log2 FC = 2.179) is reported to be 
an oncogene (Network of Cancer Genes 7.0, http://​ncg.​
kcl.​ac.​uk) that promotes tumour growth and metastasis 

in various cancer types. Tenascin C (TNC), the sec-
ond detectable oncogene, was more highly expressed in 
T1 (log2 FC = 6.522) and LM1 (log2 FC = 2.930) than in 
NM1 but showed lower levels in LM1 than in T1 (log2 
FC = − 3.592).

At the RNA level, 30 transcripts in the NM1 vs. T1 
comparison and 34 in the NM1 vs. LM1 comparison 
were differentially expressed at |log2 FC| > 1 (Additional 
file 1: Fig. S5c). Contrasting RNAs were found in the T1 

Fig. 3  Overlap of the transcriptome and proteome data showing significantly expressed targets for NM vs. T (a) and NM vs. LM (b) group 
comparisons. NM, normal mucosa; T, tumour; LM, liver metastasis

http://ncg.kcl.ac.uk
http://ncg.kcl.ac.uk
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vs. LM1 comparison, with no genes showing |log2 FC| > 1 
(Additional file  1: Fig. S5d). Additional file  2: Table  S2 
lists the top differentially expressed RNAs with either 
higher or lower gene expression for each two-group com-
parison. Among RNAs with a higher level in LM1 than 
T1, SFRP4 was previously reported as an oncogene (Net-
work of Cancer Genes 7.0).

The overlap of differentially expressed genes and pro-
teins showed three molecules for the NM1 vs. T1 com-
parison (CA1, CLCA1, ZG16) and six for the NM1 vs. 
LM1 comparison (CA1, CLCA1, FABP4, MUC2, PIGR, 
ZG16). The abundance of CEACAM5, which has been 
widely applied in clinical detection of liver metastasis of 
CRC, showed almost no differential expression between 
NM1, T1, and LM1 at RNA and protein levels (Addi-
tional file 1: Fig. S5).

Patient 2: male, left‑sided CRC (pT1)
Proteome analysis of samples from another patient 
(NM2/T2 and LM2) indicated proteome expression 
changes between initial diagnosis and metastasis surgery 
after 36 months. The patient underwent several chemo-
therapies during that timeframe. In total, 183 proteins 
in the NM2 vs. T2 comparison and 265 in the NM2 vs. 
LM2 comparison were differentially expressed (|log2 
FC| > 2, Additional file 1: Fig. S6a and b). The comparison 
between T2 and LM2 revealed only 70 contrasting pro-
teins. Additional file 2: Table S3 provides the top differ-
entially expressed proteins with either a higher or lower 
protein concentration for each comparison. Among pro-
teins with a higher level in LM2 than T2, SRSF3 (Ser-
ine and Arginine Rich Splicing Factor, log2 FC = 2.013) 
is the only reported oncogene (Network of Cancer 
Genes 7.0). Interestingly, SRSF3 was also strongly more 
highly expressed in T2 (log2 FC = 2.944) and LM2 (log2 
FC = 4.956) than in NM2. CEACAM5, a potential marker 
for CRC progression, was also strongly upregulated in T2 
and LM2 compared to NM2.

Regarding gene expression data, 53 RNAs revealed 
|log2 FC| > 1 in the NM2 vs. T2 comparison and 59 
in the NM2 vs. LM2 comparison. The comparison of 
T2 vs. LM2 revealed 13 differentially expressed RNAs 
(Additional file  1: Fig. S6c and d). The top differentially 
expressed RNAs of the three two-group comparisons 
are presented in Additional file 2: Table S4. The overlap 
of differentially expressed genes and proteins showed 
nine features for the NM2 vs. T2 comparison (CA1, 
CLCA1, CPA3, EPB41L3, JCHAIN, MATN2, MUC2, 
OGN, SULT1B1) and eight for the NM2 vs. LM2 com-
parison (CA1, CLCA1, MATN2, MEP1A, MUC2, PIGR, 
SULT1B1, ZG16). PIGR is an annotated healthy driver 
(Network of Cancer Genes 7.0) with lower RNA (log2 

FC = − 1.165) and protein (log2 FC = − 2.676) levels in 
LM2 than NM2.

Patient 3: male, left‑sided CRC (pT3)
Proteome analysis of the samples from a third patient 
(NM3/T3 and LM3) indicated proteome expression 
changes between initial diagnosis and metastasis surgery 
after one month. In total, 328 proteins in the NM3 vs. T3 
comparison and 264 in the NM3 vs. LM3 comparison 
were differentially expressed (|log2 FC| > 2, Additional 
file  1: Fig. S7a and b). In total, 83 contrasting proteins 
were obtained through the comparison between T3 and 
LM3. Additional file 2: Table S5 gives the top 15 differen-
tially expressed proteins (low & high), including the two 
strongly expressed oncogenes, i.e., CD74 and TNC, and 
the clinically applicable biomarker for CRC liver metasta-
sis CEACAM5.

Furthermore, 19 RNAs in the NM3 vs. T3 compari-
son and 35 in the NM3 vs. LM3 comparison were dif-
ferentially expressed (|log2 FC| > 1). The comparison 
between T3 and LM3 revealed only nine differentially 
expressed genes (the top genes are presented in Addi-
tional file 2: Table S6). Interestingly, only CA1 was found 
at a lower level in both malignant tissues than in adjacent 
mucosa at both RNA and protein levels (RNA level: log2 
FC = − 1.208 and − 1.402; protein level: log2 FC = − 2.170 
and − 3.133, Additional file 1: Fig. S7c and d).

Patient 4: female, right‑sided CRC (pT4)
Samples from the fourth patient were retrieved during 
one simultaneous surgery. This opened the possibility 
of not merely collecting one sample of the tumour and 
its paired liver metastasis but six distinct tumour parti-
tions. Semi-quantitative protein profiling by LC‒MS/
MS revealed 329 proteins to be differentially expressed 
in NM4 vs. T4 (pooled) and 249 proteins in NM4 vs. 
LM4 comparison (|log2 FC| > 2). Comparing T4 and LM4 
showed 155 differentially expressed proteins (Additional 
file  1: Fig.  S8a and b, top proteins are shown in Addi-
tional file  2: Table  S7). Interestingly, almost all tumour-
associated proteins, including the oncogenes DEK and 
CHD4 and the tumour-suppressor gene MYH9, were 
expressed at lower levels in LM4 than in T4. In contrast, 
CEACAM5 was more highly expressed in LM4. Par-
ticular attention should be given to TNC, SRSF3, and 
OLFM4, which presented the highest protein expression 
in T4 and LM4 compared to NM4.

Based on transcriptomic analysis, 35 RNAs showed 
|log2 FC| > 1 in the NM4 vs. T4 comparison; 61 showed 
|log2 FC| > 1 in the NM4 vs. LM4 comparison. Compar-
ing T4 vs. LM4 revealed only four differentially expressed 
targets (Additional file 1: Fig. S8c and d). Additional file 2: 



Page 10 of 15Praus et al. Journal of Translational Medicine           (2023) 21:41 

Table  S8 lists the top differentially expressed RNAs for 
the three two-group comparisons. The overlap of genes 
and proteins showed two molecules for the NM4 vs. T4 
comparison (OGN, ORM1), one for the NM4 vs. LM4 
comparison (CA1), and one for the T4 vs. LM4 compari-
son (FGG).

The intra‑tumoral proteomic landscape in samples 
from patient 4
Six distinct parts of the primary tumour of P4 were 
analysed to assess how different tumour biopsies might 
display intra-tumoral heterogeneity at the transcrip-
tome and proteome levels. Interestingly, the Pearson 
correlation between T4(1–6) vs. NM4 and LM4 vs. 
NM4 ranged from 0.3596 < r < 0.7032 at the protein 
level and from 0.2100 < r < 0.8043 at the transcriptome 
level (Additional file  1: Figs. S9 and S10), highlight-
ing different RNA and protein compositions for the 
six biopsies. Frequently mutated genes were ERBB2 
(100%), APC (100%), GNA11 (100%), KRAS (100%), 
PIK3CA (100%), SMAD4 (100%), and TP53 (100%). All 
17 genes with a detectable mutation are presented in 
Additional file 1: Fig. S11.

Functional enrichment analysis of detected proteins
Gene set enrichment analysis using HALLMARK gene 
sets was performed to obtain more comprehensive 
insight into the biological and functional characteristics 
of cancer progression in individual patients. Because 
of the small effect size, RNA expression data were not 
used for functional enrichment. With the threshold 
of FDR < 0.05, the protein expression differences indi-
cated distinct activated pathways during the normal-to-
tumour-to-metastasis transition for individual patients.

Pathway analysis for P1 revealed xenobiotic metab-
olism, coagulation, and KRAS signalling as the top 
enriched hallmark gene sets in LM1 compared to NM1 
and T; P2 showed activated pathways associated with 
angiogenesis, coagulation, and the complement system. 
Proteomic profiling for P3 resulted in activated pathways 
related to the epithelial-mesenchymal transition (EMT), 
myogenesis, and angiogenesis, P4 showed signatures cor-
relating with oxidative phosphorylation, reactive oxygen 
species pathway, and bile acid metabolism (Fig.  4). The 
most striking results from the data are that: (i) individual 
pathways in a given patient is utilized during metastasis, 
and (ii) the most activated pathways were detected in T 
vs. LM comparisons.

Discussion
In this report, we describe a panomics investigation of 
CRC that integrates a unique set of paired samples of the 
colon mucosa, primary tumours, and liver metastasis to 
provide insight into the impact of progression in individ-
ual patients. To ensure a robust model and patient com-
parison, we developed a new protocol to prepare fresh 
frozen samples with no freeze-and-thaw steps followed 
by proteomic approaches. This workflow robustly identi-
fied potential targets for early detection, diagnosis, and/
or therapeutic intervention.

Our panomics approach indicated differentially 
expressed genes and proteins between adjacent nor-
mal mucosa and malignant tissue (T & LM, Figs.  1 and 
2). As one of the few features overlapping between RNA 
and protein data in our group comparisons, CLCA1 was 
significantly lower expressed in malignant tissue than 
in healthy colonic mucosa (RNA: log2FCTvsNM = − 4.02, 
q-value = 0.0068; log2FCLMvsNM = − 4.12, q-value = 0.0057; 
protein: log2FCTvsNM = − 21.01, q-value = 0.0029; protein 
log2FCLMvsNM = − 20.88, q-value = 0.0029). This finding 
supports evidence from previous observations [33, 34] that 
show decreased expression of CLCA1 during CRC carcino-
genesis. The CLCA1 protein, the gene for which is located 
at 1p22.3, is predominantly expressed in intestinal crypts 
and goblet cells of the colon mucosa. It activates calcium-
dependent chloride channels and is primarily involved in 
mucus regulation [35, 36]. The tumour-suppressive func-
tion of CLCA1 is based on inhibition of EMT and the 
Wnt/β-catenin signalling pathway: both pathways reduce 
proliferation but promote differentiation, migration, and 
invasion [34, 37]. CLCA1 has already been identified as 
a prognostic factor in CRC, whereby a low expression 
level is associated with poor survival and advanced dis-
ease stages [38, 39]. Nevertheless, the exact mechanism of 
decreased expression of CLCA1 in malignant tissues needs 
to be elucidated in detail. Carbonic anhydrase-1 (CA1, 
8q21.2) is reported to be decreased in CRC [40], which is 
consistent with our results (RNA: log2FCTvsNM = − 4.02, 
q-value = 0.0068; log2FCLMvsNM = − 4.12, q-value = 0.0057, 
protein: log2FCTvsNM = − 21.01, q-value = 0.0029; 
log2FCLMvsNM = − 20.88, q-value = 0.0029). CA1 belongs to 
the large family of zinc metalloenzymes, which maintain pH 
homeostasis [41] and catalyse the reversible hydration and 
dehydration reactions of CO2/H2CO3 [42]. Previous stud-
ies have shown that CA1 mRNA is significantly reduced in 
colon carcinoma and that loss of CA1 expression is associ-
ated with the disappearance of differentiated epithelial cells 
[43]. Accordingly, mRNA, RNA, and protein levels of CA1 
are reduced in CRC according to data from Human Protein 
Atlas [31, 44].

Another important finding was the lower RNA- 
and protein level of matrilin-2 (MATN2) in tumour 
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compared to normal tissues (RNA: log2FCTvsNM = − 2.45, 
q-value = 0.0093; log2FCMLMvsNM = − 3.71, q-value = 0.0010, 
protein: log2FCTvsNM = − 3.75, q-value = 0.0011; 
log2FCMLMvsNM = − 4.16, q-value = 0.0004). MATN2 is the 
largest member of the matrilin family, can bind to fibrillar 
collagens, and plays a role in cell growth and tissue remodel-
ling [45, 46]. MATN2 expression has been shown to be sig-
nificantly altered during cancer progression [47–49].

Most strikingly, we detected patient individuality 
and not group affiliation as the primary driver of the 
transcriptome and proteome in CRC. Each primary 
carcinoma was closely associated with its metastatic 
counterpart using cluster algorithms, without showing 
drastic mutational differences (Figs.  1a and 2a). First, 
these results are consistent with other studies reporting 
significant inter-individual heterogeneity in the clinico-
pathologic characteristics in CRC. For example, it has 

Fig. 4  GAGE against HALLMARK gene sets using protein expression data for all two-group comparisons and all patients
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been demonstrated that, e.g., stratification along with 
right-sided or left-sided tumours, according to Consen-
sus Molecular Subtypes by Guinney et al., impact prog-
nosis [50]. Second, these findings highlight the individual 
evaluation of patients and comparison of entity groups. 
Most biomarker studies compare two or more groups 
that comprise specific disease subgroups and/or healthy 
individuals. However, by analysing paired patient sam-
ples, the expression data obtained in this investigation 
were more informative. Although we did not detect any 
differentially expressed genes and proteins between the 
T- and M-groups, the panomics landscape between indi-
vidual patient T and M samples was drastically different 
(Figs. 1 and 2).

At the specific gene and protein levels, we found 
SRSF3, olfactomedin 4 (OLFM4), and the clinical routine 
marker CEACAM5 to be differentially expressed during 
patient-intra-individual CRC progression. SRSF3 was 
identified as a differentially expressed protein in P2 and 
P4, showing a high level in malignant tissues compared to 
adjacent normal mucosa (range log2FCTvsNM: 2.94–6.93; 
range log2FCLMvsNM: 4.93–4.96). SRSF3 (6p21.31-p21.2) 
is a target of the Wnt/β-catenin signalling pathway [51] 
and exerts its pro-oncogenic effects in different ways [52, 
53]. SRSF3 is co-expressed with interleukin enhancer-
binding factor 3 (ILF3) followed by increased alternative 
splicing of pro-proliferative ILF3 isoforms [54]; it also 
favours energy production via anaerobic glycolysis due to 
increased splicing of pyruvate kinase isoform M2 [55].

In addition to SRSF3, OLFM4 (13q14.3) showed a 
prominent expression increase in tumour and metas-
tasis of P4 (log2 FCT-NM: 7.65; log2 FCLM-NM: 7.65), with 
no differences between tumour and metastasis samples 
(log2FCLMvsT: 0). OLFM4 is a glycoprotein involved in 
cell adhesion processes through cadherin interaction [56] 
and is predominantly expressed in crypts of the healthy 
colonic mucosa [57]. Our finding broadly supports other 
studies in this area linking OLFM4 over-expression with 
colorectal disease: van der Flier, Shinozaki, and Huang 
showed that higher protein levels of OLFM4 are associ-
ated with inflammatory bowel disease, adenomatous pre-
cursors, and CRC [57–59].

The detected protein levels of CEACAM5 reflect the 
challenge of inter- and intra-tumour heterogeneity and 
the importance of patient individuality. CEACAM5 
(synonym for carcinoembryonic antigen, CEA) is over-
expressed in approximately 90% of gastrointestinal, 
colorectal, and pancreatic cancers [60]. Serum levels 
of CEA are used clinically to monitor postoperative 
disease recurrence or response to cancer therapy in 
CRC, usually in combination with imaging and endo-
scopic procedures [61]. The current study found that 
CEACAM5 is heterogeneously expressed in primary 

and metastatic CRC tissue. Although a homogenous 
low level of CEACAM5 protein was detected in normal 
mucosa, protein expression increased heterogeneously 
per patient in malignant tissues. In detail, P1 and P4 
presented an equal CEA level in both malignant tissues 
(T & LM), but CEA was increased or decreased in LMs 
of P2 and P3. This finding is consistent with other stud-
ies confirming strong intra- and inter-individual het-
erogeneity and limited diagnostic and prognostic value 
[62, 63].

Despite analysed a unique set of paired patient sam-
ples concerning tumour heterogeneity by integrating 
genomic, transcriptomic, and proteomic analyses, some 
limitations of the present study should be considered. 
First, markers detected may be reflective of therapeutic 
regimens after surgery for the primary tumour, which 
can affect the molecular composition of the disease dur-
ing progression. Another potential limitation of this 
study was the variability of clinical parameters between 
individuals. Hence, the results of this small cohort may 
reflect bias associated with the collection of such clinical 
data. Therefore, validation of the changes among groups 
reflecting CRC progression requires future large-scale 
screenings.

Conclusion
We showed that inter- and intra-tumour heterogeneity 
is clearly detectable by panomics and that patients and 
not disease groups present distinct similarities point-
ing to individual clinical phenotypes. In addition to 
changes among groups reflecting CRC progression (e.g., 
CA1, CLCA1, MATN2), we identified significant expres-
sion differences between individual patient tissues (e.g., 
SRSF3, OLFM4, CEACAM5), contributing to existing 
knowledge on patient-specific progression and high-
lighting the importance of paired samples for precision 
medicine. Additional studies using larger patient cohorts 
are needed to confirm our results and to investigate the 
biological function of the detected genes/proteins during 
CRC progression for novel patient stratification.
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