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Abstract 

Background:  This study aimed to develop a radiogenomic prognostic prediction model for colorectal cancer (CRC) 
by investigating the biological and clinical relevance of intratumoural heterogeneity.

Methods:  This retrospective multi-cohort study was conducted in three steps. First, we identified genomic subclones 
using unsupervised deconvolution analysis. Second, we established radiogenomic signatures to link radiomic features 
with prognostic subclone compositions in an independent radiogenomic dataset containing matched imaging and 
gene expression data. Finally, the prognostic value of the identified radiogenomic signatures was validated using two 
testing datasets containing imaging and survival information collected from separate medical centres.

Results:  This multi-institutional retrospective study included 1601 patients (714 females and 887 males; mean age, 
65 years ± 14 [standard deviation]) with CRC from 5 datasets. Molecular heterogeneity was identified using unsuper‑
vised deconvolution analysis of gene expression data. The relative prevalence of the two subclones associated with 
cell cycle and extracellular matrix pathways identified patients with significantly different survival outcomes. A radiog‑
enomic signature-based predictive model significantly stratified patients into high- and low-risk groups with disparate 
disease-free survival (HR = 1.74, P = 0.003). Radiogenomic signatures were revealed as an independent predictive 
factor for CRC by multivariable analysis (HR = 1.59, 95% CI:1.03–2.45, P = 0.034). Functional analysis demonstrated 
that the 11 radiogenomic signatures were predominantly associated with extracellular matrix and immune-related 
pathways.

Conclusions:  The identified radiogenomic signatures might be a surrogate for genomic signatures and could com‑
plement the current prognostic strategies.
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Background
Colorectal cancer (CRC) is the third leading cause of can-
cer-related deaths worldwide. Despite recent advance-
ments in therapeutic techniques, the 5-year overall 
survival (OS) for this malignancy is only approximately 
50% [1]. Therefore, there is an urgent need to develop 
prognostic biomarkers for improving CRC treatment. 
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Substantial research has demonstrated that CRC is a het-
erogeneous disease with distinct molecular features and 
clinical responses [2–4]. An accurate understanding of 
the biological properties of CRC heterogeneity is essen-
tial for precise treatment, prediction of clinical progno-
sis, and the development of molecular subtype-specific 
targeted drugs.

Intratumour heterogeneity (ITH) is a hallmark of can-
cer that drives tumour evolution and disease progres-
sion. Increased ITH has been linked to a higher chance 
of recurrence, regardless of cancer type or treatment [5]. 
Therefore, exploration of ITH is helpful for the develop-
ment of accurate prognostic tools. Previous studies have 
shown that the ITH of CRC can be characterised by 
massive parallel sequencing data [6–8]. Recent studies 
on CRC subtypes have employed unsupervised cluster-
ing to classify whole-genome expression profiles derived 
from bulk tumours. This unsupervised method has been 
effectively applied to a number of malignancies [9] but is 
less effective for mixtures with unknown compositions 
and noise. The deconvolution approach is an alternative 
unsupervised method that can estimate the underly-
ing subclones of genomics in complex tissues to better 
understand tumour heterogeneity and predict prognosis 
[10].

Numerous studies on gene signature biomarkers have 
been published because of the advent of sequencing tech-
nology. However, their clinical applications are relatively 
limited. Current gene expression profiling methods are 
expensive, time-consuming, invasive, and require tumour 
biopsies for tissue extraction. Therefore, it was unavail-
able for all the patients. In contrast, radiomic biomarkers 
do not incur any additional expenses, because medical 
imaging is a routine part of the clinical decision-mak-
ing process. Unlike biopsies, medical imaging is non-
invasive and can provide information about the entire 
tumour phenotype, including ITH. Multiple studies have 
reported an association between radiomic characteristics 
and underlying gene expression patterns.

Radiogenomics explores the association between radi-
omic features and genomic characteristics, with the aim 
of revealing relevant features that reflect the underly-
ing biological functions most related to clinical pheno-
types. Numerous studies have established the viability of 
radiogenomics for identifying intrinsic molecular sub-
types and gene expression profiles in cancers such as 
ovarian cancer [11], glioblastoma [12] and breast cancer 
[13]. Fan et al. [13] developed a radiogenomic signature 
to describe the landscape of breast cancer sub-clones 
and investigated their biological roles. Wu et  al. [14] 
identified three imaging subtypes of breast cancer using 
dynamic MRI images and evaluated the prognostic value 
of these subtypes using public gene expression data.

Here, we investigated the biological and clinical rel-
evance of modelling multiscale ITH by conducting 
a radiogenomic analysis of 1601 samples from CRC 
patients on five datasets of four clinical cohorts (Figs. 1, 
2).

Methods
Study design
Ethics approval for the retrospective review of imaging 
and clinical data was obtained from local ethics com-
mittees. The requirement for written informed consent 
was waived. The study was conducted in accordance 
with the most recent version of the Declaration of Hel-
sinki. This study was conducted in three steps (Fig.  1). 
First, we identified four genomic subclones of CRC using 
unsupervised deconvolution analysis of publicly available 
genomic datasets. The biological functions of each sub-
clone were explored using gene set enrichment analysis 
(GSEA) [15]. Based on the estimated proportion of each 
subclone, patients were divided into high- and low-risk 
groups by consensus clustering, and survival differences 
were compared between the groups. Second, we estab-
lished radiogenomic signatures to link radiomic features 
with prognostic subclone compositions in an independ-
ent radiogenomic dataset containing matched imaging 
and gene expression data. Lastly, the prognostic value 
of the identified radiogenomic signatures was validated 
using two independent testing datasets containing imag-
ing and survival information collected from different 
medical centres.

Patient population and data collection
This multi-institutional retrospective study comprised 
five datasets: a genomic development dataset (n = 200), 
genomic testing dataset (n = 559), radiogenomic dataset 
(n = 236), and two image testing datasets (n = 543, 69). A 
total of 1601 patients diagnosed with CRC were enrolled 
(Fig. 2). Genomic development and testing datasets were 
retrieved from the Gene Expression Omnibus with acces-
sion numbers GSE17538 [16] and GSE39582 [8], respec-
tively. CRC cohorts from the Sixth Affiliated Hospital of 
Sun Yat-sen University (SYSU6H) and the First People’s 
Hospital of Kashi Prefecture (KSH) were used in the 
radiogenomic discovery and validation steps. The inclu-
sion criteria were as follows: (a) pathologically confirmed 
CRC, (b) no history of neoadjuvant therapy, and (c) 
underwent contrast-enhanced CT within 30 days prior to 
surgery. Patients were further excluded if the CT images 
were of insufficient quality for analysis or lost to follow-
up. The patients’ follow-up cutoff was November 2021. 
Matched CT scans and RNA sequencing data were avail-
able for 236 patients from SYSU6H (Radiogenomic data-
set). Patients with only CT images from two independent 
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Fig. 1  The workflow for integrative analysis of genomic and radiomic data. Step 1, unsupervised deconvolution method is employed to identify 
CRC subclones following by the biological function analysis. Step 2, prognostic predictive model is built based on radiogenomic signatures. Step 3, 
assessing the predictive model on imaging test datasets
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Fig. 2  Data organization flowchart of four cohorts. A total of 1601 samples of colorectal cancer patients were included in five datasets of four 
cohorts according to the selection criteria
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medical centres were used as test datasets. In particular, 
patients with only CT images from SYSU6H were allo-
cated to image testing dataset 1 and patients from KSH 
were allocated to image testing dataset 2. The demo-
graphic and clinical characteristics of patients from the 
two medical centres are summarised in Table  1. The 
methods were performed in accordance with the rel-
evant guidelines and regulations, and were approved by 
SYSU6H.

All enhanced CT scans were acquired in the Digital 
Imaging and Communications in Medicine (DICOM) 
format. Experienced clinicians manually contoured the 
tumour regions of interest to arrive at a three-dimen-
sional segmentation using ITK-snap (Version 3.2; http://​
itksn​ap.​org/). All image processing and feature extraction 
processes were performed using the Pyradiomics pack-
age (21) on the Python platform (Version 2.7).

Deconvolution analysis and modelling
The deconvolution method of convex analysis of the 
mixture [17] was employed to identify genomic sub-
clones. The convex analysis of the mixture method 

postulates that the gene expression level is a linear com-
bination of sub-population expression, and the weight 
contribution of a sub-population is proportional to its 
abundance and specific expression. The linear mix-
ing model can be formulated as an X = A × S . Convex 
analysis of a mixture identifies molecular markers from 
the original mixed expression matrix(X) and generates 
a reference matrix(S) and a fraction matrix(A), where 
the reference matrix is a subclone-specific expression 
and the fraction matrix estimates the constituent pro-
portion. Patients were stratified into high- and low-risk 
groups based on the fraction matrix using consensus 
clustering [18]. Then, the least absolute shrinkage and 
selection operator (LASSO) with Cox regression was 
applied to select radiogenomic signatures with nonzero 
coefficients. We performed a tenfold cross-validation 
procedure to optimise the parameters. A prognostic 
predictive model was built using an extreme learn-
ing machine [19] with 1000 hidden nodes. The trained 
model classified patients into high- and low-risk 
groups.

Table 1  Demographic characteristics of patients

Genomic 
development 
dataset

Genomic testing 
dataset

Radiogenomic dataset Image testing dataset 1 Image 
testing 
dataset 2

n 200 559 236 537 69

Sex (%)

 F 98 (49) 251 (44.9) 101 (42.8) 225 (41.9) 39 (56.5)

 M 102 (51) 308 (55.1) 135 (57.2) 312 (58.1) 30 (43.5)

Tumour grade (%)

 High 16 (8) – 53 (22.5) 102 (19.0) –

 Low 29 (14.5) – 17 (7.2) 30 (5.6) 57 (82.6)

 Middle 155 (77.5) – 135 (57.2) 167 (31.0) 12 (17.4)

 Unknown – – 31 (13.1) 239 (44.4) –

CEA (%)

 Abnormal – – 131 (55.5) 226 (41.6) 43 (62.3)

 Normal – – 98 (41.5) 114 (21.0) 26 (37.7)

 Unknown – – 7 (3.0) 203 (37.4) –

TNM stage (%)

 I 28 (14) 32 (5.7) 22 (9.3) 84 (15.6) –

 II 70 (35) 262 (46.9) 65 (27.5) 188 (34.9) 12 (17.4)

 III 75 (37.5) 202 (36.2) 64 (27.1) 187 (34.8) 41 (59.4)

 IV 27 (13.5) 60 (10.7) 82 (34.7) 79 (14.7) 16 (23.2)

 Unknown – 3 (0.5) 3 (1.3) – –

DFS (months, mean (SD)) 42.28(30.10) 48.74(40.38) 37.46 (26.70) 56.76 (35.17) 16.46 (4.26)

Event (%)

 Disease-free 145 (72.5) 379 (67.8) 157 (66.5) 349 (65.0) 41 (59.4)

 Relapse 55 (27.5) 177 (31.7) 79 (33.5) 188 (35.0) 28 (40.6)

 Unknown – 3 (0.5) – – –

http://itksnap.org/
http://itksnap.org/


Page 5 of 12Zhong et al. Journal of Translational Medicine          (2022) 20:574 	

Validation of the prognostic value of the radiogenomic 
signatures
We tested the prognostic capability of the radiogenomic 
signatures by assessing the association with disease-free 
survival (DFS) in two independent cohorts, including 
image testing dataset 1 from SYSU6H and testing dataset 
2 from KSH.

Statistical analysis
Statistical analyses were performed using the R software 
(version 3.6.2). Univariate and multivariate analyses were 
performed using the Cox proportional hazard regres-
sion model. LASSO logistics regression analysis was 
performed by the ‘glmnet’ R package. The Kaplan–Meier 
method was employed to estimate survival probability, 
and the log-rank test was used to determine survival dif-
ferences. The optimal cut-point for continuous variables 
was determined by the cut-point function from the ‘sur-
vminer’ R package [20]. All analyses were considered sta-
tistically significant at a two-sided P value of < 0.05.

Results
The identification of CRC subclones
ITH was estimated at the genome level by unsupervised 
convex analysis of a mixture of gene expression data from 
GSE17538 (genomic development dataset, n = 200). The 
optimal number of subclones was determined using the 
minimum description length curve, a widely adopted 
information theoretical criterion. K = 4 was chosen based 
on the minimum description length, indicating there were 
four optimal CRC subclones (Fig. 3A). Among these four 
subclones, subclone 2 had the highest fraction propor-
tion, accounting for approximately 49% of all subclones. 
The subclone with the lowest proportion was subclone 4, 
with only 3.56% (Fig. 3B). To investigate the biological roles 
of the identified subclones, GSEA was performed using 
subclone-specific marker genes inferred by convex analy-
sis of the mixture method. GSEA analysis revealed that 
these four subclones are distinguished by distinct pathways 
(Fig. 3C): subclone 1 features the Wnt signalling pathway; 
subclone 2 is characterised by the cell differentiation path-
way; subclone 3 is characterised by the cell cycle, which 

Fig. 3  Four genomic subclones were identified by unsupervised deconvolution analysis. A Minimum description length curve determined the 
optimal clustering number k = 4. B Proportion distribution in each subclone. C GSEA analysis shown that the identified subclones are significantly 
enriched in cancer-related pathways
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reflects cell proliferation and may be used to estimate prog-
nosis [21]; subclone 4 is associated with the extracellular 
matrix (ECM), which regulates epithelial-to-mesenchymal 
transition, and dysregulated expression of related genes is 
associated with poor prognosis [22]. Based on the biologi-
cal enrichment analysis, we found that subclone 1,3, and 4 
recapitulated the previously reported CMS2, CMS1, and 
CMS4 of CRC consensus molecular subtypes (CMS) [3].

Prognostic assessment of genomic subclones
To examine the prognostic power of cancer-related path-
ways, including cell cycle and ECM subclones (subclones 
3 and 4), we determined their correlation with OS in the 
development dataset (n = 200) by calculating the propor-
tion of the total subclones. The cell cycle and ECM sub-
clones stratified patients into poor and good OS groups, 
with significantly different survival rates (log-rank test 
P < 0.001, Fig.  4A; log-rank test P < 0.001, Fig.  4B). Briefly, 
tumours with a high proportion of cell cycle subclones 
exhibited good prognosis (Fig.  4A). In contrast, tumours 
containing the ECM subclone with a high prevalence were 
more likely to show inferior OS (Fig. 4B). To further investi-
gate the prognostic capacity of these subclones, we applied 
consensus clustering based on the patient subclone compo-
sition. Patients were finally clustered into two groups, high-
risk (n = 39) and low-risk (n = 161), based on cell cycle and 
ECM prognostic subclone compositions. There was a sig-
nificant difference in the OS between the two groups (log-
rank test, P = 0.003; HR, 2.2; Fig. 4C). To further evaluate 
the clinical relevance of the genomic subclones, we exam-
ined them using a second public CRC genomic dataset 
(GSE39582; n = 559). The fraction matrix of the genomic 
testing dataset was obtained on the basis of the reference 
matrix inferred from the genomic development dataset. 
Patients were also clustered into high- and low-risk groups 
according to the tumour subclone composition. Similarly, 
the high-risk group was associated with inferior survival 
(log-rank test, P = 0.025; HR, 1.4; Fig. 3D).

Using comprehensive data from the genomic testing 
dataset (GSE39582), we further investigated the correla-
tion between the subclones and recognised CRC molecular 
biomarkers. The frequencies of various key mutations, such 
as TP53, KRAS, and BRAF, differed significantly across the 
subclone-clustered high- and low-risk groups (Fig.  4E). 
Microsatellite instability, BRAF, and CIMP + were enriched 
in the low-risk group. The increased incidence of TP53 and 
KRAS mutations in the high-risk group may lead to more 
aggressive tumours and poorer prognoses. Consistently, 

the high-risk group exhibited a significantly higher fre-
quency of tumour recurrence (Fig. 4E). Taken together, the 
genomic subclones identified using unsupervised deconvo-
lution analysis revealed a substantial correlation between 
ITH and patient prognosis.

Radiogenomic signatures development
Radiogenomic signatures were established by linking 
radiomic features to genomic signatures of ITH. Patients 
from SYSU6H who contributed to the CT scans and gene 
expression profiles in the radiogenomic dataset (n = 236) 
were used to develop radiogenomic signatures. Under 
the supervision of the reference matrix inferred from the 
genomic development dataset, the gene expression pro-
files of the radiogenomic dataset were deconvoluted to 
obtain a fraction matrix. The patients were divided into 
high- and low-risk groups using consensus clustering 
and predictive subclone fractions. The two groups were 
strongly associated with DFS (log-rank test, P = 0.0033; 
Fig.  5A). Radiogenomic signatures were extracted from 
the enhanced CT imaging data and used to train a pre-
dictive model for classifying patients into high- and low-
risk groups. We generated 100 radiomic features from the 
CT images. LASSO-Cox regression was performed on 
the radiogenomic dataset, and 11 features with nonzero 
coefficients were selected. Detailed information on the 
selected radiogenomic signatures is provided in Addi-
tional file 1: Table S1. Based on the clustered groups and 
selected radiogenomic signatures, we built a prognostic 
and predictive model using an extreme learning machine 
classifier with 1000 hidden nodes. This radiogenomic sig-
nature-based classifier has an accuracy of 0.97 in predict-
ing each risk group.

Prognostic assessment of radiogenomic signatures
The clinical significance of radiogenomic signatures was 
assessed by determining their ability to predict survival. 
Two image-testing datasets (n = 543; n = 69) were used 
to evaluate the clinical relevance of the radiogenomic 
signatures. The radiogenomic signatures successfully dis-
tinguished patients into high- and low-risk groups with 
diverse DFS (test dataset 1: P = 0.018; Fig. 5B; test data-
set 2: P = 0.016; Fig. 5C), demonstrating their efficacy as 
prognostic predictors of CRC.

To examine whether the proposed radiogenomic signa-
tures were independent prognostic factors, we performed 
multivariate Cox regression analyses on both the radiog-
enomic and testing datasets. Available clinical variables 

Fig. 4  Genomic subclones correlate significantly with patient survival and clinicopathological factors. Kaplan–Meier curves show the significant 
association of proportion in cell cycle (A) and extracellular matrix (B) with overall survival. Genomic subclones stratified patients into high- and 
low-risk group with diversity in overall survival in the development dataset (C) and testing dataset (D). E The two patients’ groups show significant 
association with some clinicopathological factors (* < 0.05, ** < 0.01, *** < 0.001)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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applied for analysis included clinicopathological factors 
such as sex (male vs. female), carcinoembryonic anti-
gen (CEA, normal < 5  ng/ml vs. abnormal >  = 5  ng/ml), 
tumour grade (low vs. middle and high), and TNM stage 
(I-II vs. III-IV). The serum CEA level and TNM stage 
were identified as prognostic risk factors in the radiog-
enomic dataset (P = 0.001 and P < 0.001, respectively) and 
imaging test dataset 1 (P = 0.025 and P < 0.001, respec-
tively); however, their significance was lost in image test-
ing dataset 2. Radiogenomic signatures were the only 

independent prognostic factors for DFS across all three 
datasets (P = 0.03, P = 0.05, and P = 0.01, respectively) 
(Table 2).

Biological function analysis of the radiogenomic signatures
The aforementioned findings indicate that radiog-
enomic signatures can serve as noninvasive surrogates 
for genomic signatures. To investigate the biological 
processes linked to the radiogenomic signatures, we ran 
GSEA with a gene expression profile for each patient 

Fig. 5  Radiogenomic signatures validated as predictors of colorectal cancer prognosis. Kaplan–Meier curves show the two groups developed on 
radiogenomic dataset (A), image testing dataset1 (B) and dataset2 (C) correlate significantly with patient disease-free survival. D The colour block in 
the heatmap represent the value of Pearson correlation coefficient and ‘*’ represents a statistically significant correlation (p < 0.05)
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based on the Molecular Signatures Database [15]. The 
gene expression of 236 patients from the radiogenomic 
dataset was used to calculate the enrichment score using 
the DeepCC tool [23]. Spearman’s correlations were cal-
culated between the 11 radiogenomic signatures and the 
enrichment scores for specific dysregulated molecular 
pathways. The 11 radiogenomic signatures were strongly 
related to the ECM and immune-related pathways. The 
original_gldm_DependenceEntropy was significantly 
enriched in the extracellular matrix pathways, whereas 
the original_shape_SurfaceVolumeRatio was significantly 
enriched in the immune pathways (Fig.  5D). The value 
of the original_shape_SurfaceVolumeRatio is the ratio of 
the surface area to the volume and partly depends on the 
volume of the tumour region. We found that the patients’ 
relapse probability increased with decreasing surface vol-
ume ratio value (t-test, P = 0.02, Additional file 1: Figure 
S1).

Discussion
In this multi-institutional study, we conducted a radiog-
enomic analysis of 1601 CRC samples from five datasets 
to investigate ITH and establish radiogenomic signatures 
to predict prognosis. Integrative analysis employing radi-
omics and genomics shows great promise in unravelling 
ITH and predicting CRC prognosis.

ITH is gaining recognition as a factor in aggressive 
disease development and resistance to therapy. ITH is a 
negative prognostic factor in patients with various solid 
malignancies [24]. In addition, a comprehensive study 
showed that the mesenchymal features of tumours are 
highly correlated with ITH and immunosuppressive path-
ways [25]. Numerous studies have sought to investigate 
ITH by comprehensively analysing genomic data [26, 27]. 
However, the clinical utility of ITH is limited. Although 
high-throughput sequencing can provide a great deal of 
biological information, it is limited by expense, invasion, 
and the potential for sampling bias caused by ITH. Imag-
ing, on the other hand, provides a unique opportunity for 
non-invasive interrogation of the entire tumour and its 
surrounding tissues, and may provide crucial supplemen-
tary information for molecular research. Non-invasive 

imaging markers derived from routine clinical images 
have been increasingly researched to provide insights 
into the tumour microenvironment. Radiogenomics, 
on the other hand, integrates image characteristics with 
genomic features, harnesses the noninvasive benefits of 
radiomics, and simultaneously leverages the power of 
genomics to dramatically improve the interpretability of 
models.

We built a prognosis prediction model based on 
radiogenomic signatures that capture the underlying 
relationships between prognostic genomic signatures and 
radiomic signatures of ITH. An unsupervised deconvo-
lution approach was performed on the gene expression 
profiles of CRC primary tumours to dissect ITH and 
identify the four genomic subclones. Different subclone 
compositions reflect ITH in tumours and are predictive 
of patient survival. Prognostic-relevant genomic sig-
natures of CRC were subsequently generated from the 
proportional compositions of key predictive subclones. 
By mapping these genomic signatures to radiomic sig-
natures, radiogenomic signatures were created. Finally, a 
clinically useful predictive model was constructed using 
the radiogenomic signatures and survival data.

Our research showed that radiogenomic signatures 
may be a suitable substitute for genomic signatures. Even 
with imaging-only data input, validation results of test 
cohorts from two separate medical centres indicated that 
our radiogenomic prognostic prediction model could 
effectively stratify the prognostic risk of CRC patients 
(Fig. 5B, C). A robust predictive model was constructed 
by establishing a link between genomics and radiomics. 
In the process of applying the model, only image data is 
required in the absence of genomic data, which dramati-
cally lowers the threshold for clinical application of the 
model. Currently, imaging examinations are routinely 
used for tumour diagnosis and therapy decisions. Utilis-
ing images as input data for prognostic prediction mod-
els does not significantly increase healthcare expenditure. 
Furthermore, imaging examinations are noninvasive and 
can be repeated at various times. CT-based radiogenomic 
signatures allow us to forecast patient prognosis and ITH 
prior to surgery.

Table 2  Multivariable analysis of the prognostic value of radiogenomic signatures and other clinical factors

Radiogenomics dataset Imaging test dataset 1 Imaging test dataset 2

HR (95% CI) P HR (95% CI) P HR (95% CI) P

Sex:(M vs. F) 1.33 (0.87–2.05) 0.17 1.48 (1.03–2.14) 0.03 1.14 (0.5–2.65) 0.75

CEA:(Abnormal vs. Normal) 1.95 (1.29–2.96) 0.0014 1.51 (1.5–2.19) 0.025 1 (0.42–2.37) 0.98

Tumour grade: (Low vs. Middle + High) 1.22 (0.66–2.25) 0.52 1.94 (0.94–4) 0.07 1.74 (0.72–4.23) 0.22

TNM stage: (I + II vs. III + IV) 4.29 (2.5–7.38)  < 0.001 2.74 (1.84–4.1)  < 0.001 2.24 (0.81–6.2) 0.12

Radiogenomics groups: (High risk vs. Low risk) 1.59 (1.03–2.45) 0.034 1.42 (1–2.02) 0.05 2.78 (1.21–6.34) 0.01
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Owing to the construction of a link between genom-
ics and radiomics, the model is substantially more inter-
pretable. Imaging characteristics have been related to 
CRC outcomes, such as treatment response, lymph 
node metastasis, local recurrence, and survival [28–30], 
but their biological underpinnings remain unclear. In 
the present study, we did not introduce relevant prior 
information but identified four CRC genomic subclones 
by analysing a large number of gene expression pro-
files using a fully unsupervised deconvolution strategy. 
According to our study, tumours with a low proportion 
of cell cycle subclones and a high proportion of extra-
cellular matrix subclones were associated with a shorter 
survival rate. Among the signalling pathways within the 
cell cycle subclone, the G1/S transition and cell cycle 
checkpoint pathways likely reflect the DNA damage 
response and can be exploited for prognosis [31]. Cell 
cycle checkpoints can repair DNA and prevent further 
damage by detecting damaged DNA and temporarily 
halting the cell cycle progression. Cell cycle dysregula-
tion can lead to abnormal cell proliferation and apopto-
sis, and is responsible for tumourigenesis. Defects in cell 
cycle checkpoints may be a cause of genomic instability 
in tumours [32]. Therefore, abnormalities in cell cycle 
pathways have prognostic significance in CRC. The ECM 
subclone is another subclone strongly associated with 
prognosis. It is reported that ECM remodelling is associ-
ated with CRC carcinogenesis and progression [33, 34]. 
As a major component of the tumour microenvironment, 
the ECM plays a crucial role in tumour progression and 
treatment response. Chakravarthy et al. built a signature 
that linked extracellular matrix genes to immune evasion 
and immunotherapy failure [35]. Eleven radiomic char-
acteristics were chosen for our model, the majority of 
which were enriched in ECM- and immune-related path-
ways, which are well-known prognosis-related pathways. 
This suggests that the prognostic value of these radiomic 
signatures has a biological foundation. These morpho-
logical textures and spatial features are inseparable from 
the gene- and cell-level characteristics. Machine learn-
ing helps us better understand the biology behind these 
morphological textures and spatial features. Using this 
three-step methodology, we created a prognostic predic-
tion model that provides an entry point for elucidating 
the underlying molecular mechanisms.

Our study had several limitations. First, this was a 
retrospective study, which led to inevitable disadvan-
tages. In follow-up research, these findings should be 
validated by prospective studies to reduce the bias caused 
by uncontrollable factors in retrospective studies. Sec-
ond, our genomic development dataset and correspond-
ing testing dataset were obtained from public databases. 
However, cohorts 3 and 4 came from local medical 

centres and provided in-house data. CT scans from dif-
ferent machines at different centres better validate the 
robustness and clinical usability of the model. Third, the 
regions of interest are manually annotated, and this pro-
cess is time-consuming and tedious. We are currently 
investigating more robust semi-automatic annotation 
methods [36] to address this issue.

Conclusions
In conclusion, we conducted an integrative analysis of 
genomics and radiomics to dissect ITH and build mod-
els for predicting the prognosis of patients with CRC. 
The unsupervised deconvolution method for genomic 
subclone identification provides a new perspective for 
exploring tumour heterogeneity. Radiogenomic signa-
tures can be independent prognostic biomarkers and may 
serve as surrogates for genomic signatures. This integra-
tive analysis of the radiogenomic strategy shows great 
promise for understanding ITH, and can be extended to 
other cancers to help patients who might benefit from 
precise clinical treatment.
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