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Radiomics features for assessing 
tumor‑infiltrating lymphocytes correlate 
with molecular traits of triple‑negative breast 
cancer
Guan‑Hua Su1,2†, Yi Xiao1,2†, Lin Jiang1,2, Ren‑Cheng Zheng3, He Wang3, Yan Chen4, Ya‑Jia Gu2,5*, 
Chao You2,5* and Zhi‑Ming Shao1,2 

Abstract 

Background:  Tumor-infiltrating lymphocytes (TILs) have become a promising biomarker for assessing tumor 
immune microenvironment and predicting immunotherapy response. However, the assessment of TILs relies on 
invasive pathological slides.

Methods:  We retrospectively extracted radiomics features from magnetic resonance imaging (MRI) to develop a 
radiomic cohort of triple-negative breast cancer (TNBC) (n = 139), among which 116 patients underwent transcrip‑
tomic sequencing. This radiomic cohort was randomly divided into the training cohort (n = 98) and validation cohort 
(n = 41) to develop radiomic signatures to predict the level of TILs through a non-invasive method. Pathologically 
evaluated TILs in the H&E sections were set as the gold standard. Elastic net and logistic regression were utilized to 
perform radiomics feature selection and model training, respectively. Transcriptomics was utilized to infer the detailed 
composition of the tumor microenvironment and to validate the radiomic signatures.

Results:  We selected three radiomics features to develop a TILs-predicting radiomics model, which performed well in 
the validation cohort (AUC 0.790, 95% confidence interval (CI) 0.638–0.943). Further investigation with transcriptomics 
verified that tumors with high TILs predicted by radiomics (Rad-TILs) presented activated immune-related pathways, 
such as antigen processing and presentation, and immune checkpoints pathways. In addition, a hot immune micro‑
environment, including upregulated T cell infiltration gene signatures, cytokines, costimulators and major histocom‑
patibility complexes (MHCs), as well as more CD8+ T cells, follicular helper T cells and memory B cells, was found in 
high Rad-TILs tumors.

Conclusions:  Our study demonstrated the feasibility of radiomics model in predicting TILs status and provided a 
method to make the features interpretable, which will pave the way toward precision medicine for TNBC.

Keywords:  Radiomics, Tumor-infiltrating lymphocytes (TILs), Triple-negative breast cancer (TNBC), Tumor 
microenvironment (TME), Magnetic resonance imaging (MRI)

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Triple-negative breast cancer (TNBC) is defined as a 
breast cancer subtype that lacks expression of the estro-
gen receptor (ER), progenitor receptor (PR) and human 
epidermal growth factor receptor type 2 (HER2) [1]. Due 
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to the aggressive biological nature of TNBC and the lack 
of therapeutic targets, TNBCs are characterized by fre-
quent local recurrence and visceral metastasis [1, 2].

Tumor-infiltrating lymphocytes (TILs) have been used 
as a biomarker of prognosis and therapeutic response in 
several cancer types [3, 4]. In breast cancer, TILs are most 
commonly found in TNBC [5, 6]. In a series of clinical 
trials and prospective studies, recurrence-free survival 
(RFS), disease-free survival (DFS) and overall survival 
(OS) outcomes were positively correlated with the quan-
tity of TILs in TNBC tumors [5–9]. Lymphocyte-pre-
dominant breast cancer (LPBC) is considered to be a type 
of breast cancer that responds better to chemotherapy 
than non-lymphocyte-predominant breast cancer (non-
LPBC) [10–12]. In recent years, immunotherapy, par-
ticularly the use of immune checkpoint blockades (ICBs), 
has produced favorable clinical benefits in patients with 
both early and advanced TNBC [13–15]. In addition to 
current biomarkers [programmed cell death-ligand 1 
(PD-L1), tumor mutation burden (TMB) and microsatel-
lite instability/deficient mismatch repair (MSI/dMMR)] 
[16, 17], TILs are expected to become another biomarker 
for predicting patient response to ICBs. Currently, TILs 
are evaluated through features exhibited by hematoxylin 
and eosin (H&E)-stained pathological slides obtained via 
invasive biopsy [3].

Radiomics is a method for extracting high-throughput 
features from medical images [18, 19]. These quantitative 

features could be analyzed with data from other obser-
vations to reflect the presence of significant genomic 
events, patients’ response to therapy and prognosis, ulti-
mately contributing to cancer diagnosis and treatment 
[18–24]. The noninvasive and reproducible nature of 
radiomics provides us with a favorable approach to pre-
dict clinicopathological variables. However, radiomics is 
limited by its poor interpretability.

In this article, we developed a radiomics signature to 
infer TILs status noninvasively and investigate the molec-
ular biological significance of the radiomics signature, 
hoping to overcome the poor interpretability and facili-
tate the clinical utilization of radiomics for TNBC treat-
ment optimization.

Methods
Cohorts and datasets
We retrospectively enrolled 139 triple-negative breast 
cancer (TNBC) patients treated  at the Fudan Univer-
sity Shanghai Cancer Center (FUSCC) from 1 August 
2009 to 31 May 2015  with baseline dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) 
available who were suitable for radiomics analysis. 
In this TNBC radiomic cohort, transcriptomic data 
(n = 116) was also available. The framework of this 
study is presented as Fig.  1. The TNBC radiom-
ics cohort (n = 139) was split into a training cohort 
(n = 98) and a validation cohort (n = 41) with a 7:3 ratio 

TILs Evaluation of 
Breast Cancer Patients

Breast 
DCE-MRI

Tumor 
SegmentationData Partitioning

Feature Extraction 
and Selection

High TILs Low TILs
Training Set

Validation Set

I II III

V

IV

Rad-TILs Model
Training and Validation

Biological Significance
of Radiomics ModelVI VII

Fig. 1  Schematic of the study. Tumor-infiltrating lymphocytes (TILs) densities were evaluated on H&E slides and were split into high and low TILs 
based on cut-off of 20%. Study cohort was randomly divided into training and validation cohort at a 7:3 ratio and similar high TILs proportion was 
kept in training and validation cohort. Regions of interest (ROIs) were segmented from the original breast MRI. Radiomics features were extracted 
from ROIs and were used to develop a TILs prediction model. Transcriptomics analysis was performed to further illustrate the radiomics model
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using a stratified randomization method to keep high 
and low TILs proportions similar in the two cohorts 
(Table  1). Quantification of stromal tumor-infiltrating 
lymphocytes (sTILs), fibrosis and necrosis were evalu-
ated on pathological H&E staining area by two patholo-
gists according to published guidelines [25, 26]. In this 
study, tumor-infiltrating lymphocytes (TILs) refer to 
sTILs unless otherwise specified. A percentage of sTILs 
≥ 20% was defined as a high TILs level (Fig. 2A, B).

Magnetic resonance imaging (MRI) parameters
All the patients in this cohort underwent MRI with 
1.5 T special breast magnetic resonance (Aurora Imag-
ing Technology, Aurora Systems, Inc., Canada) and 
coils for breast. A series of cross-sectional images were 
obtained in prone position, including plain scan T2WI 
(TR 6680  ms, TE 68  ms, slice thickness 3  mm, slice 
spacing 1 mm), T1WI (TR 5 ms, TE 13 ms, slice thick-
ness 3 mm, slice spacing 1 mm) and dynamic contrast-
enhanced T1WI (TR 5  ms, TE 29  ms, slice thickness 
1.1 mm, slice spacing 0 mm, FOV 360 × 360 mm). The 
contrast medium Gd-DTPA (0.2  mmol/kg, flow rate 
2.0 ml/s) was injected 90 s after plain scan. Postcontrast 
images were obtained at 90, 180, 270, and 360  s after 
injection.

Image preprocessing
In this study, the tumor regions of interest (ROIs) were 
delineated semiautomatically on the peak enhanced 
phase of CE-MRI by 3D Slicer software (https://​www.​
slicer.​org/). ROIs were placed on all slices that contained 
the whole tumor or the largest lesion (in the case of mul-
ticentric or multifocal tumors). To ensure reproducibility, 
some of the ROIs were initially delineated by two radi-
ologists at FUSCC (C.Y. and D.D.Z. with 9 and 4 years of 
experience in breast MRI, respectively). The inter- and 
intra-observer reproducibility of the ROIs and radiomic 
feature extraction were initially analyzed with the CE-
MRI data of 60 randomly selected patients in a blinded 
fashion by two radiologists. Additionally, one radi-
ologist (C.Y. with 9  years of experience in breast MRI) 
repeated the ROI drawing twice with an interval of at 
least 1 month and generated radiomic features following 
the same procedure. Intraclass correlation coefficients 
(ICCs) were utilized to evaluate the intra- and interob-
server agreement in terms of feature extraction. Inter- 
and intraobserver reproducibility and radiomic feature 
extraction achieved substantial agreement with ICC 
> 0.75 both among the ROIs from the two radiologists 
and between the ROIs from the same radiologist [27]. An 
ICC greater than 0.6 was considered a marker of satis-
factory inter- and intra-observer reproducibility. On the 
premise of good consistency, whole ROI segmentation 

Table 1  Comparison of the basic information of the training and validation sets

SD standard deviation, BLIS basal-like immune-suppressed, IM immunomodulatory, LAR luminal androgen receptor, MES mesenchymal-like

Clinical characters Level Training set (n = 98) Validation set (n = 41) p value

Age (years, mean [SD]) – 54.28 (10.57) 54.61 (12.25) 0.872

Menopause (%) False 31 (32.3) 13 (32.5) 1

True 65 (67.7) 27 (67.5)

T stage (%) 1 48 (49.0) 14 (34.1) 0.206

2 46 (46.9) 26 (63.4)

3 4 (4.1) 1 (2.4)

N stage (%) 0 56 (58.3) 27 (65.9) 0.226

1 23 (24.0) 12 (29.3)

2 12 (12.5) 2 (4.9)

3 5 (5.2) 0 (0.0)

Stromal TILs (%) High 56 (57.1) 23 (56.1) 1

Low 42 (42.9) 18 (43.9)

Ki-67 [mean (SD)] – 56.99 (21.90) 64.27 (26.14) 0.094

Molecular subtype (%) BLIS 29 (29.6) 13 (31.7) 0.709

IM 21 (21.4) 9 (22.0)

LAR 17 (17.3) 8 (19.5)

MES 16 (16.3) 3 (7.3)

Unknown 15 (15.3) 8 (19.5)

https://www.slicer.org/
https://www.slicer.org/
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was completed by the more experienced radiologist in 
each layer of the MRI scan.

All other phases were co-registered into the first 
postcontrast phase of DCE-MRI through non-linear 
registration using the symmetric normalization algo-
rithm [28], which was performed in the ANTs toolbox, 
to eliminate the spatial mismatches caused by motion 
artifact. Nonparametric nonuniformity normalization 
(N3) algorithm was applied for bias field correction [29]. 
Moreover, Z-Score Normalization algorithm was used for 
data normalization.

Radiomics feature extraction
We performed a feature extraction process on DCE-
MRI images (four phases) based on the open source 
Pyradiomics package V3.0, implemented in Python 
3.6 [30], including shape features, first-order features, 
textural features, wavelet domain features and time 

domain features. For spatial domain features, 14 shape-
based features were common to all phases, which 
describe the difference in shape between different types 
of tumors. Eighteen first-order features and 75 textural 
features were calculated from the four phases individu-
ally. First-order features describe the distribution of 
voxel intensities, and textural features were obtained 
based on 5 textural matrices to describe the radiologi-
cal pattern of the ROI, including the gray level cooc-
currence matrix (GLCM), gray level dependence matrix 
(GLDM), gray level run length matrix (GLRLM), gray 
level size zone matrix (GLSZM), and neighboring gray 
tone difference matrix (NGTDM). Moreover, wave-
let domain features were extracted for each first order 
feature and textural feature by applying wavelet filter-
ing to the original images, yielding 8 decompositions 
per level. In addition, for time domain features, the 
extracted sequential features were mainly composed of 
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Fig. 2  Training and validation of the TILs-predicting radiomics (Rad-TILs) model. A, B Representative TNBC pathological samples with high (A) and 
low (B) stromal tumor-infiltrating lymphocytes (sTILs). C Heatmap showing the distribution of selected radiomics feature value in high and low 
sTILs samples from the training and validation cohorts. D, E The correlation between sTILs status evaluated by pathologists (high and low sTILs) and 
TILs scores predicted by the radiomics model (Radiomics TILs score) in the training cohort (D) and validation cohort (E). F, G Receiver operating 
characteristic (ROC) curve of Rad-TILs model in the training cohort (F) and validation cohort (G)
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the mean, variance, kurtosis and skewness of the time-
varying curve constructed based on feature values in 
four phases, for each first order, textural and wavelet 
domain feature. The specific number of features and the 
corresponding calculation formulae are described in 
detail in the Additional file 1.

Model training and validation
Elastic net regression and logistic regression were uti-
lized to select the most predictive radiomics features 
from the extracted features and to train machine learning 
model, respectively. Specifically, in the training cohort, 
we selected the most predictive radiomics features char-
acterizing TILs levels with elastic net regression [31]. 
Then, the logistic regression was performed with the 
selected features to develop a TILs prediction signature 
referred to as Rad-TILs. The probability of high TILs pre-
dicted by radiomics model (p) was generated by the fol-
lowing formula:

In this study, β0 = 0.9123828, β1 = −0.6522518, β2 = 
−0.9434133, β3 = −1.5792121, X1 = Enhanced-Phase-
1-wavelet-LLL-Skewness, X2 = Skewness-wavelet-
LLL-GLCM-IDMN, X3= Skewness-GLSZM-LGLZE. 
Rad-TILs score was defined as the probability of high 
TILs predicted by radiomics model (p), where higher 
Rad-TILs score indicated a higher predictive probability 
of high TILs based on the three representative radiom-
ics features. The efficiency of the prediction model was 
assessed by the receiver operating characteristic (ROC), 
specificity, sensitivity and accuracy in the validation 
cohort.

Comparison of enriched pathways between groups
The Rad-TILs score was calculated by the Rad-TILs 
model in the subcohort of patients whose RNA-seq data 
were available (n = 116). Patients were separated into 
high- and low-Rad-TILs groups by the median Rad-TILs 
score in the model training process. We conducted differ-
entially expressed gene (DEG) selection (“limma” package 
in R) [32] and KEGG pathway analysis (“clusterProfiler” 
package in R) [33]. Furthermore, we conducted gene set 
enrichment analysis (GSEA) using the KEGG and Reac-
tome databases (“clusterProfiler” package in R) [33] to 
compare enriched pathways between high- and low-Rad-
TILs patients.

ln
p

1− p
= β0+ β1X1+ β2X2+ · · · + βpXp

Comparison of immune infiltration 
in the microenvironment between groups
A previously published reference matrix of gene sets 
characterizing different immune cell populations suitable 
for breast cancer [34] was adopted in the present study. 
Single sample gene set enrichment analysis (ssGSEA) 
was used to calculate the immune cell abundance score 
in every patient (“GSVA” package in R) [35]. Then, the 
Wilcoxon test was utilized to compare the difference 
between the high- and low-Rad-TILs groups.

Comparison of immune‑related molecules between groups
Cytokines, costimulators, coinhibitors and major his-
tocompatibility complexes (MHCs) were compared 
between the two groups by transcriptomic analysis. 
Furthermore, two gene signatures characterizing T cell 
inflammation status [36] and T cell cytolytic activity [37] 
were adopted to infer the T cell status in the two groups 
of patients.

Statistical analysis
Student’s t test and Wilcoxon’s test were used to com-
pare continuous variables. Prior to the comparisons, the 
normality of the distributions was tested with the Shap-
iro–Wilk test. Pearson’s chi-square test and Fisher’s exact 
test were employed for the comparison of unordered cat-
egorical variables. All the tests were two sided. P < 0.05 
was regarded as indicating significance, and 0.05 < P < 0.1 
was regarded as marginally significance unless otherwise 
stated. The false discovery rate (FDR) correction was 
used in multiple hypothesis testing to decrease false posi-
tive rates. All statistical analyses were performed with R 
software (version 4.0.3, http://​www.R-​proje​ct.​org).

Results
TILs‑related radiomics feature selection and prediction 
model establishment
We retrospectively curated 139 TNBC samples with 
preoperative DEC-MRI and post-operative H&E patho-
logical slides to establish a TILs evaluation cohort. The 
intention of the study was split into two parts: genera-
tion of TILs prediction radiomics model and illustra-
tion of biological basis of the radiomics model (Fig. 1). 
A percentage of sTILs ≥ 20% was defined as high TILs 
level (Fig.  2A, B). With all the extracted radiomics 
features, we used elastic net regression to select the 
features that most closely correlated with tumor-infil-
trating T lymphocytes (TILs) in the training cohort. The 
following three radiomics features were finally selected: 
Enhanced-Phase-1-wavelet-LLL-Skewness (spatial 

http://www.R-project.org
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domain feature) that describes a first order imaging 
feature after applying wavelet filtering transformation 
of original first post-enhanced phase images, Skew-
ness-wavelet-LLL-GLCM-IDMN (time domain feature) 
that depicts the variance pattern of a textural feature 
after wavelet filtering between each enhanced phase, 
and Skewness-GLSZM-LGLZE (time domain feature) 
that reflects the variance pattern of a textural feature 
between each enhanced phase (detailed description of 
radiomics features was presented in Additional file  1). 
The correlation between selected radiomics features 
and clinical characteristics was listed in Additional 
file 1: Table S1. In the training and validation cohorts, 
the three features presented a relatively lower value in 
tumors with high TILs (Fig.  2C). Then, the radiomic 
features were used as variables for logistic regression 
to build a prediction model. A predicted score reflect-
ing the probability of high or low TILs (Radiomics TILs 
score, Rad-TILs score) for each patient was generated. 
We used the median of the Rad-TILs scores as a cutoff 
value to discriminate distinct Rad-TILs levels (Fig. 2D, 
E). The area under the receiver operating characteris-
tic (ROC) curve (AUC) was 0.868 (95% CI 0.797–0.938) 
when predicting TILs in the training cohort, and the 
AUC was 0.790 (95% CI 0.638–0.943) in the valida-
tion cohort (Fig.  2F, G). In addition, the performance 
of the prediction model was tested for specificity (0.70), 
sensitivity (0.89) and accuracy (0.71) in the validation 
cohort.

Immune‑related pathways enriched in high Rad‑TILs score 
patients
Cohort of patient with available radiomics and RNA-seq 
data was then used to investigate the transcriptomic dif-
ference between two sets of patients with distinct Rad-
TILs levels. First, differentially expressed genes (DEGs) 
related to immunity, such as CXCL11, CXCL13, and 
IDO1, were discovered between the two groups (Fig. 3A). 
KEGG analysis inferred that several pathways correlated 
with the immune response, such as antigen process-
ing (p = 0.02) and presentation and PD-L1 expression 
and PD-1 checkpoint pathway in cancer (p = 0.04), were 
significantly upregulated in high Rad-TILs patients 
(Fig. 3B). From the most upregulated and downregulated 
pathways summarized by GSEA based on the KEGG 
and Reactome databases, we found that the upregulated 
pathways were mainly enriched in immune response and 
immune modulation. However, the downregulated genes 
were difficult to categorize (Fig. 3C, D). Moreover, natu-
ral killer cell-mediated cytotoxicity and T cell receptor 

signaling pathway were upregulated in high Rad-TILs 
patients (Fig. 3E). Thus, we verified the different immune 
responses at the transcriptome level between the high- 
and low-Rad-TILs groups predicted by radiomics.

A hot immune microenvironment in high Rad‑TILs score 
patients
We analyzed the correlation between Rad-TILs score lev-
els and the clinicopathological characteristics of TNBC 
patients. High Rad-TILs score patients tended to have 
fewer pathologically positive lymph nodes (p = 0.073), 
but the difference was not statistically significant 
(Fig. 4A). Higher stromal TILs (sTILs) and immunohisto-
chemistry (IHC) CD8 scores were detected in high Rad-
TILs score patients (Fig.  4B, C). The intrinsic subtypes, 
mRNA subtypes, fibrosis and necrosis were equivalent 
between the two groups (Fig. 4D, E). Furthermore, tumor 
microenvironment (TME) cluster 3, which was proposed 
in our previous study to characterize the inflammatory 
immune status of TNBC [34], was significantly enriched 
in high Rad-TILs score patients (Fig. 4F).

We also compared the difference in the composition of 
immune cells in the TME inferred by RNA-seq between 
high- and low-Rad-TILs score patients. Memory B cells, 
M1 macrophages, activated NK cells, plasma cells, CD8 
T cells, follicular helper T cells and regulatory T cells 
were significantly or marginally significantly increased 
in the high Rad-TILs score group (Fig.  5A). Based on 
two published immune cell signatures, we found that 
patients with high Rad-TILs scores exhibited higher cyto-
lytic activity and T cell inflamed gene expression profiles 
(Fig. 5B, C).

A relatively inflammatory TME in high Rad-TILs 
tumors was also indicated by the comparison of key mol-
ecules on the cell surface and cell-cell interactions. Sev-
eral molecules expressed on the cell surface, including 
costimulators, coinhibitors and major histocompatibility 
complex (MHC), were highly expressed in high Rad-TILs 
score patient tumors (Fig. 5D, E, J). In addition, the levels 
of secreted immune-related cytokines, such as interleu-
kins (ILs), colony-stimulating factors (CSFs), interfer-
ons (IFNs) and chemokines, were significantly elevated 
in the high group of patients (Fig.  5F–I), while the lev-
els of transforming growth factors (TGFs) and tumor 
necrosis factors (TNFs) were equivalent between the 
two groups. Consequently, we established the relation-
ship between opaque radiomics features and meaning-
ful molecular features. Apart from distinct TILs levels, 
high Rad-TILs TNBC samples exhibited a hot immune 
microenvironment.
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Fig. 3  Immune related pathways enriched in the high TILs samples predicted by the radiomics model. A Differentially expressed genes between 
high and low TILs samples predicted by the radiomics model (high and low Rad-TILs). B Representative upregulated pathways in high Rad-TILs 
by KEGG enrichment analysis. C Top 10 upregulated and downregulated pathways in high Rad-TILs by GSEA based on KEGG database. D Top 10 
upregulated and downregulated pathways in high Rad-TILs by GSEA based on Reactome databases. E Representative immune-related pathways 
enriched in high Rad-TILs by GSEA based on KEGG database



Page 8 of 12Su et al. Journal of Translational Medicine          (2022) 20:471 

Discussion
In the present study, we trained a TILs prediction model 
in the discovery cohort with a noninvasive radiomics 
method, which performed well in an additional valida-
tion cohort. In further investigation, we found a negative 
correlation between the Rad-TILs score and clinical risk 
factors, as well as the activated microenvironment exhib-
ited in high Rad-TILs samples inferred by transcriptom-
ics data, which supported and verified our initial finding. 
Significantly, radiomics combined with pathologic and 
transcriptomic data effectively reflected TILs status, and 
its potential mechanism was first reported in our study.

TILs play an important role in cancer biology and 
clinical oncology. TILs are regarded as biomarkers for 
immune infiltration and the prognosis of cancer patients 
and are promising potential biomarkers of patient 
response to immunotherapy. However, TILs quantifica-
tion currently relies on manual evaluation of pathological 
slides, which is limited by the invasive method of speci-
men collection and time-consuming analysis approach.

Using a TNBC radiomics cohort with matched tran-
scriptomic data, we established a three-feature radiomics 
signature, the Rad-TILs score, to noninvasively predict 

the level of sTILs, which are more commonly measured 
clinically than intratumoral TILs (iTILs). The predic-
tion model performed well in the validation cohort with 
an AUC of 0.79. In addition, the high accuracy (0.71), 
sensitivity (0.89) and specificity (0.70) also validated 
our model. Prior to the present study, several studies 
explored the relationship between radiomics and TILs 
[38–46]. Consistent with our work, the range of AUC, 
sensitivity and specificity of these studies were 0.67–0.87, 
0.63–0.89 and 0.56–0.91, respectively. Interestingly, we 
found that most of the studies achieved high sensitivity 
but low specificity, which was also testified in our results. 
We thus speculate that radiomics in TILs prediction is a 
method with high sensitivity and low specificity.

Although previous studies have reported the predictive 
value of radiomics features in TILs prediction, the bio-
logical characteristics of these crucial radiomics features 
or image subgroups were not fully investigated. A deeper 
investigation of distinct image subgroups provided novel 
insight into the interpretability of opaque radiomics fea-
tures and correlated molecular features apart from TILs. 
In this study, we revealed the distinct TME features 
of patients with high and low lymphocyte infiltration 
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predicted by radiomics (high and low Rad-TILs score) 
using matched RNA-seq, which demonstrated the unique 
value of multiomics in exploring the biological mecha-
nism of radiomics features. First, we analyzed the DEGs 
between high- and low-Rad-TILs score patients and 
revealed that immune-related pathways were significantly 
enriched in the high-Rad-TILs score group. In addition, 
we compared the immune-related signatures, molecules 
and breast cancer subtypes between the two groups. Two 
representative signatures of the quantity and activity of 
T cells [36, 37, 47], several cytokines, immune check-
point molecules and MHC molecules, were increased in 
the high Rad-TILs score group. The proportion of clus-
ters characterizing immune inflammation [34] in the 
high Rad-TILs score group was also larger than that in 
the low Rad-TILs score group. Thus, it can be concluded 
that high Rad-TILs score tumors have an inflammatory 
immune microenvironment, and patients with high Rad-
TILs scores are more likely to be sensitive to immuno-
therapy and have a better clinical outcome; however, the 
application of the Rad-TILs signature needs further vali-
dation in larger independent cohorts.

Moreover, we investigated the immune cells and 
TME subtypes in the two groups of patients. In addi-
tion to CD8-positive T cells, a variety of immune cells 
encompassing T helper cells, regulatory T cells, CD8 
T cells, M1 macrophages, memory B cells and plasma 
cells aggregated in the high Rad-TILs score group. It 
has been reported that TILs comprise CD8+ cytolytic T 
cells, CD4+ helper T cells, CD20+ B cells and NK cells 
[3, 48, 49], which is consistent with our prediction. The 
important role of T cells has been well established [50, 
51], and recent studies have shed light on the function of 
B cells and plasma cells in the homeostasis of the TME 
[52]. Specifically, B cells promote antitumor immunity 
through antibody and cytokine production, antigen pres-
entation and their role in tertiary lymphoid structures 
formation [52]. Kroeger et al. discovered that plasma cells 
were strongly associated with CD8+ cytolytic T cells, 
and prognostic benefits were found only when coexist-
ing with CD4+, CD20+ TILs and plasma cells in ovarian 
cancer [53]. Consistent with the results of previous stud-
ies, our study revealed the important role of B cells in the 
TME.

Several limitations still remain in our research. First, 
the prediction model was built and tested based on a 
single-center radiomics cohort. The universality of the 
model remains to be externally validated. In addition, the 
transcriptomic analysis inferred distinct TMEs between 
high- and low-Rad-TILs samples. However, the results 
need further phenotypic characterization and mechanis-
tic investigation.

We propose two future directions for further studies. 
First, multicenter and prospective clinical trial are nec-
essary to demonstrate the generalization of TILs pre-
diction model. Second, recent study revealed distinct 
TILs infiltration phenotypes in cancer termed immune 
inflamed, immune desert and immune excluded, which 
indicated that lymphocytes infiltration pattern but not 
the density of TILs determined the activating status 
of anti-tumor immunity [54]. Whether these immune 
phenotypes were more valuable than TILs density as 
a predictive biomarker needs to be explored in future 
studies.

In conclusion, we established a TILs prediction model 
using radiomics features in a TNBC radiomics cohort 
and revealed the distinct composition and characteristics 
of the microenvironment in two groups of patients dif-
ferentiated by our radiomics model. The radiomics model 
is promising for application in clinical practice and may 
become a noninvasive biomarker for therapeutic stratifi-
cation and prognostic prediction among TNBC patients.

Abbreviations
AUC​: Area under the ROC curve; CSFs: Colony-stimulating factors; DEG: Differ‑
entially expressed gene; DFS: Disease-free survival; dMMR: Deficient mismatch 
repair; ER: Estrogen receptor; FDR: False discovery rate; FUSCC: Fudan Univer‑
sity Shanghai Cancer Center; GSEA: Gene set enrichment analysis; H and E: 
Hematoxylin and eosin; HER2: Human epidermal growth factor receptor type 
2; ICBs: Immune checkpoint blockades; IFNs: Interferons; IHC: Immunohisto‑
chemistry; ILs: Interleukins; iTILs: Intratumoral tumor-infiltrating lymphocytes; 
LPBC: Lymphocyte-predominant breast cancer; MHCs: Major histocompat‑
ibility complexes; MRI: Magnetic resonance imaging; MSI: Microsatellite insta‑
bility; non-LPBC: Non-lymphocyte-predominant breast cancer; OS: Overall 
survival; PD-L1: Programmed cell death-ligand 1; PR: Progesterone receptor; 
RFS: Recurrence-free survival; RNA-seq: RNA sequencing; ROC: Receiver 
operating characteristic; ROIs: Regions of interest; ssGSEA: Single sample gene 
set enrichment analysis; sTILs: Stromal tumor-infiltrating lymphocytes; TGFs: 
Transforming growth factors; TILs: Tumor-infiltrating lymphocytes; TMB: Tumor 
mutation burden; TME: Tumor microenvironment; TNBC: Triple-negative breast 
cancer; TNFs: Tumor necrosis factors.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​022-​03688-x.

Additional file 1: Table S1. Correlation between selected radiomics 
features and clinical characteristics listed in Table 1. Table S2. Feature 
categories used in this study. Supplementary Methods. Radiomics 
features calculation.

Acknowledgements
We thank the staff of the Radiology Department of Fudan University Shanghai 
Cancer Center for their assistance in breast MRI imaging collection. We thank 
Dr. Dan-Dan Zhang for her contribution to ROI delineation in this study. We 
thank Dr. Shen Zhao for his contribution to TILs evaluation and representative 
pathological slides selection. In addition, we thank the staff of the Institute of 
Science and Technology for Brain-inspired Intelligence of Fudan University for 
their contribution to radiomics feature extraction.

Author contributions
Conception and design: CY and Y-JG. Development of methodology: G-HS, YX, 
LJ and R-CZ. Acquisition of data: G-HS, LJ, and YC. Analysis and interpretation 

https://doi.org/10.1186/s12967-022-03688-x
https://doi.org/10.1186/s12967-022-03688-x


Page 11 of 12Su et al. Journal of Translational Medicine          (2022) 20:471 	

of data: G-HS and YX. Writing, review, and/or revision of the manuscript: G-HS, 
YX, LJ, YC, CY, and Y-JG. Study supervision: Z-MS, CY and Y-JG. All authors read 
and approved the final manuscript.

Funding
This project was supported by grants from The National Natural Science Foun‑
dation of China (81901703, 82071878, 82271957, 91959207 and 92159301), 
Shanghai Science and Technology Innovation Program (22Y11912700), Youth 
Medical Talents-Clinical Imaging Practitioner Program (SHWRS (2020) 087), and 
Clinical Research Plan of SHDC (SHDC2020CR2008A and SHDC12021103) and 
the SHDC Municipal Project for Developing Emerging and Frontier Technology 
in Shanghai Hospitals (SHDC12021103).

Availability of data and materials
The datasets generated and/or analyzed during the current study are available 
in the National Omics Data Encyclopedia (NODE), and can be viewed in NODE 
(http://​www.​biosi​no.​org/​node) by pasting the accession (OEP000155) into 
the text search box or through the URL:http://​www.​biosi​no.​org/​node/​proje​ct/​
detail/​OEP00​0155.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Dr. Lin Jiang is currently an employee of AstraZeneca.

Author details
1 Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, 
Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shang‑
hai 200032, People’s Republic of China. 2 Department of Oncology, Shang‑
hai Medical College, Fudan University, Shanghai 200032, China. 3 Institute 
of Science and Technology for Brain‑Inspired Intelligence, Fudan University, 
Shanghai 201203, China. 4 Division of Cancer and Stem Cell, School of Medi‑
cine at University of Nottingham, Nottingham, UK. 5 Department of Radiology, 
Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shang‑
hai 200032, People’s Republic of China. 

Received: 23 February 2022   Accepted: 6 October 2022

References
	1.	 Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J 

Med. 2010;363:1938–48.
	2.	 Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative 

breast cancer: challenges and opportunities of a heterogeneous disease. 
Nat Rev Clin Oncol. 2016;13:674–90.

	3.	 Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, Loi S. Clini‑
cal relevance of host immunity in breast cancer: from TILs to the clinic. 
Nat Rev Clin Oncol. 2016;13:228–41.

	4.	 Byrne A, Savas P, Sant S, Li R, Virassamy B, Luen SJ, Beavis PA, Mackay LK, 
Neeson PJ, Loi S. Tissue-resident memory T cells in breast cancer control 
and immunotherapy responses. Nat Rev Clin Oncol. 2020;17:341–8.

	5.	 Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis 
P, Crown JP, Hitre E, et al. Prognostic and predictive value of tumor-
infiltrating lymphocytes in a phase III randomized adjuvant breast cancer 
trial in node-positive breast cancer comparing the addition of docetaxel 
to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin 
Oncol. 2013;31:860–7.

	6.	 Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, 
Poole CJ, Hiller L, Dunn JA, et al. Association between CD8+ T-cell 
infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 
2014;25:1536–43.

	7.	 Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino 
S, Wang M, Jones VE, Saphner TJ, et al. Prognostic value of tumor-infil‑
trating lymphocytes in triple-negative breast cancers from two phase III 
randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J 
Clin Oncol. 2014;32:2959–66.

	8.	 Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-
Lehtinen PL, Bono P, Kataja V, Desmedt C, et al. Tumor infiltrating lympho‑
cytes are prognostic in triple negative breast cancer and predictive for 
trastuzumab benefit in early breast cancer: results from the FinHER trial. 
Ann Oncol. 2014;25:1544–50.

	9.	 Pruneri G, Vingiani A, Bagnardi V, Rotmensz N, De Rose A, Palazzo A, 
Colleoni AM, Goldhirsch A, Viale G. Clinical validity of tumor-infiltrating 
lymphocytes analysis in patients with triple-negative breast cancer. Ann 
Oncol. 2016;27:249–56.

	10.	 Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies 
J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al. Tumor-associated 
lymphocytes as an independent predictor of response to neoadjuvant 
chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.

	11.	 Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, 
Pfitzner BM, Salat C, Loi S, Schmitt WD, et al. Tumor-infiltrating lympho‑
cytes and response to neoadjuvant chemotherapy with or without 
carboplatin in human epidermal growth factor receptor 2-positive and 
triple-negative primary breast cancers. J Clin Oncol. 2015;33:983–91.

	12.	 Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Nekljudova V, Schrader 
I, Sinn BV, Ulmer HU, Kronenwett R, Just M, et al. Prospective validation 
of immunological infiltrate for prediction of response to neoadjuvant 
chemotherapy in HER2-negative breast cancer—a substudy of the neo‑
adjuvant GeparQuinto trial. PLoS ONE. 2013;8:e79775.

	13.	 Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, Denkert C, 
Park YH, Hui R, Harbeck N, et al. Pembrolizumab for early triple-negative 
breast cancer. N Engl J Med. 2020;382:810–21.

	14.	 Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, Diéras V, 
Henschel V, Molinero L, Chui SY, et al. Atezolizumab plus nab-paclitaxel as 
first-line treatment for unresectable, locally advanced or metastatic triple-
negative breast cancer (IMpassion130): updated efficacy results from 
a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 
Oncol. 2020;21:44–59.

	15.	 Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, Koehler A, 
Sohn J, Iwata H, Telli ML, et al. Neoadjuvant atezolizumab in combination 
with sequential nab-paclitaxel and anthracycline-based chemotherapy 
versus placebo and chemotherapy in patients with early-stage triple-
negative breast cancer (IMpassion031): a randomised, double-blind, 
phase 3 trial. Lancet. 2020;396:1090–100.

	16.	 Goodman AM, Sokol ES, Frampton GM, Lippman SM, Kurzrock R. 
Microsatellite-stable tumors with high mutational burden benefit from 
immunotherapy. Cancer Immunol Res. 2019;7:1570–3.

	17.	 Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, 
Delord JP, Geva R, Gottfried M, Penel N, Hansen AR, et al. Efficacy of pem‑
brolizumab in patients with noncolorectal high microsatellite instability/
mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 
study. J Clin Oncol. 2020;38:1–10.

	18.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, 
Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiom‑
ics: extracting more information from medical images using advanced 
feature analysis. Eur J Cancer. 2012;48:441–6.

	19.	 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures 
they are data. Radiology. 2016;278:563–77.

	20.	 Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, 
Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ. Defin‑
ing the biological basis of radiomic phenotypes in lung cancer. Elife. 
2017;6:e23421.

	21.	 Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho 
S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al. Decoding 
tumour phenotype by noninvasive imaging using a quantitative radiom‑
ics approach. Nat Commun. 2014;5:4006.

	22.	 Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, Ma ZL, Liu ZY. 
Development and validation of a radiomics nomogram for preoperative 
prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 
2016;34:2157–64.

	23.	 Kong J, Zheng J, Wu J, Wu S, Cai J, Diao X, Xie W, Chen X, Yu H, 
Huang L, et al. Development of a radiomics model to diagnose 

http://www.biosino.org/node
http://www.biosino.org/node/project/detail/OEP000155
http://www.biosino.org/node/project/detail/OEP000155


Page 12 of 12Su et al. Journal of Translational Medicine          (2022) 20:471 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

pheochromocytoma preoperatively: a multicenter study with prospec‑
tive validation. J Transl Med. 2022;20:31.

	24.	 Sun K, Jiao Z, Zhu H, Chai W, Yan X, Fu C, Cheng JZ, Yan F, Shen D. Radiom‑
ics-based machine learning analysis and characterization of breast lesions 
with multiparametric diffusion-weighted MR. J Transl Med. 2021;19:443.

	25.	 Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, 
Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al. The 
evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: rec‑
ommendations by an International TILs Working Group 2014. Ann Oncol. 
2015;26:259–71.

	26.	 Hasebe T, Tsuda H, Hirohashi S, Shimosato Y, Tsubono Y, Yamamoto H, 
Mukai K. Fibrotic focus in infiltrating ductal carcinoma of the breast: a sig‑
nificant histopathological prognostic parameter for predicting the long-
term survival of the patients. Breast Cancer Res Treat. 1998;49:195–208.

	27.	 Landis JR, Koch GG. The measurement of observer agreement for cat‑
egorical data. Biometrics. 1977;33:159–74.

	28.	 Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic 
image registration with cross-correlation: evaluating automated labeling 
of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41.

	29.	 Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic 
correction of intensity nonuniformity in MRI data. IEEE Trans Med Imag‑
ing. 1998;17:87–97.

	30.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan 
V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational 
radiomics system to decode the radiographic phenotype. Cancer Res. 
2017;77:e104–7.

	31.	 Zou H, Hastie T. Regularization and variable selection via the elastic net. J 
R Statist Soc: Ser B. 2005;67:301–20.

	32.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma pow‑
ers differential expression analyses for RNA-sequencing and microarray 
studies. Nucleic Acids Res. 2015;43:e47.

	33.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012;16:284–7.

	34.	 Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue MZ, Ruan M, Wang H, Zhao J, Li Q, 
et al. Multi-omics profiling reveals distinct microenvironment charac‑
terization and suggests immune escape mechanisms of triple-negative 
breast cancer. Clin Cancer Res. 2019;25:5002–14.

	35.	 Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

	36.	 Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, 
Cohen RB, O’Neil BH, Mehnert JM, et al. T-cell-inflamed gene-expression 
profile, programmed death ligand 1 expression, and tumor mutational 
burden predict efficacy in patients treated with pembrolizumab across 
20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37:318–27.

	37.	 Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic 
properties of tumors associated with local immune cytolytic activity. Cell. 
2015;160:48–61.

	38.	 Bian Y, Liu C, Li Q, Meng Y, Liu F, Zhang H, Fang X, Li J, Yu J, Feng X, 
et al. Preoperative radiomics approach to evaluating tumor-infiltrating 
CD8(+) T cells in patients with pancreatic ductal adenocarcinoma using 
noncontrast magnetic resonance imaging. J Magn Reson Imaging. 
2022;55:803–14.

	39.	 Bian Y, Liu YF, Jiang H, Meng Y, Liu F, Cao K, Zhang H, Fang X, Li J, Yu J, et al. 
Machine learning for MRI radiomics: a study predicting tumor-infiltrating 
lymphocytes in patients with pancreatic ductal adenocarcinoma. Abdom 
Radiol. 2021;46:4800–16.

	40.	 Li J, Shi Z, Liu F, Fang X, Cao K, Meng Y, Zhang H, Yu J, Feng X, Li Q, et al. 
XGBoost classifier based on computed tomography radiomics for predic‑
tion of tumor-infiltrating CD8(+) T-cells in patients with pancreatic ductal 
adenocarcinoma. Front Oncol. 2021;11:671333.

	41.	 Liao H, Zhang Z, Chen J, Liao M, Xu L, Wu Z, Yuan K, Song B, Zeng Y. Pre‑
operative radiomic approach to evaluate tumor-infiltrating CD8(+) T cells 
in hepatocellular carcinoma patients using contrast-enhanced computed 
tomography. Ann Surg Oncol. 2019;26:4537–47.

	42.	 Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue 
L, Brandao D, Lancia A, Ammari S, et al. A radiomics approach to assess 
tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 
immunotherapy: an imaging biomarker, retrospective multicohort study. 
Lancet Oncol. 2018;19:1180–91.

	43.	 Tang WJ, Kong QC, Cheng ZX, Liang YS, Jin Z, Chen LX, Hu WK, Liang 
YY, Wei XH, Guo Y, Jiang XQ. Performance of radiomics models for 

tumour-infiltrating lymphocyte (TIL) prediction in breast cancer: the 
role of the dynamic contrast-enhanced (DCE) MRI phase. Eur Radiol. 
2022;32:864–75.

	44.	 Xu N, Zhou J, He X, Ye S, Miao H, Liu H, Chen Z, Zhao Y, Pan Z, Wang M. 
Radiomics model for evaluating the level of tumor-infiltrating lympho‑
cytes in breast cancer based on dynamic contrast-enhanced MRI. Clin 
Breast Cancer. 2021;21:440-449.e441.

	45.	 Yu H, Meng X, Chen H, Han X, Fan J, Gao W, Du L, Chen Y, Wang Y, Liu X, 
et al. Correlation between mammographic radiomics features and the 
level of tumor-infiltrating lymphocytes in patients with triple-negative 
breast cancer. Front Oncol. 2020;10:412.

	46.	 Yu H, Meng X, Chen H, Liu J, Gao W, Du L, Chen Y, Wang Y, Liu X, Liu B, 
et al. Predicting the level of tumor-infiltrating lymphocytes in patients 
with breast cancer: usefulness of mammographic radiomics features. 
Front Oncol. 2021;11:628577.

	47.	 Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, 
Albright A, Cheng JD, Kang SP, Shankaran V, et al. IFN-gamma-related 
mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 
2017;127:2930–40.

	48.	 Whitford P, George WD, Campbell AM. Flow cytometric analysis of tumour 
infiltrating lymphocyte activation and tumour cell MHC class I and II 
expression in breast cancer patients. Cancer Lett. 1992;61:157–64.

	49.	 Chin Y, Janseens J, Vandepitte J, Vandenbrande J, Opdebeek L, Raus J. 
Phenotypic analysis of tumor-infiltrating lymphocytes from human breast 
cancer. Anticancer Res. 1992;12:1463–6.

	50.	 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaus‑
tion. Nat Rev Immunol. 2015;15:486–99.

	51.	 Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4(+) T cell 
help in cancer immunology and immunotherapy. Nat Rev Immunol. 
2018;18:635–47.

	52.	 Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov 
DM. B cells, plasma cells and antibody repertoires in the tumour microen‑
vironment. Nat Rev Immunol. 2020;20:294–307.

	53.	 Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are associ‑
ated with tertiary lymphoid structures, cytolytic T-cell responses, and 
superior prognosis in ovarian cancer. Clin Cancer Res. 2016;22:3005–15.

	54.	 Park S, Ock CY, Kim H, Pereira S, Park S, Ma M, Choi S, Kim S, Shin S, Aum 
BJ, et al. Artificial intelligence-powered spatial analysis of tumor-infiltrat‑
ing lymphocytes as complementary biomarker for immune checkpoint 
inhibition in non-small-cell lung cancer. J Clin Oncol. 2022;40:1916–28.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Radiomics features for assessing tumor-infiltrating lymphocytes correlate with molecular traits of triple-negative breast cancer
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Cohorts and datasets
	Magnetic resonance imaging (MRI) parameters
	Image preprocessing
	Radiomics feature extraction
	Model training and validation
	Comparison of enriched pathways between groups
	Comparison of immune infiltration in the microenvironment between groups
	Comparison of immune-related molecules between groups
	Statistical analysis

	Results
	TILs-related radiomics feature selection and prediction model establishment
	Immune-related pathways enriched in high Rad-TILs score patients
	A hot immune microenvironment in high Rad-TILs score patients

	Discussion
	Acknowledgements
	References




